You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 September 2011Optical investigation of medicine solutions in micro-droplets form at interaction with laser radiation
One of the alternatives to the existing medicines and treatment procedures in fighting multi drug
resistance (MDR) is strengthening the effects of medicines by modifying their molecular structures through
exposure to laser radiation. A method associated with this, is the generation of micro-droplets which contain
medicines solutions; the droplets are utilized/produced as vectors to transport the medicines to targets.
In our studies we try to combine these two methods in order to obtain a new technique to deliver the
efficient medicines to targets that can be applied for a relative large number of chemicals. For this purpose we
have developed an experimental set-up containing a liquid droplets generator, a tunable laser source used to
irradiate droplets, a subunit to measure the laser induced fluorescence (LIF) signals and a real time recording
system for droplet image analysis.
Measurements on different probes, like ultrapure water, commercial grade medicines, newly
developed medicines and laser dyes were performed.. All these measurements were performed on waterbased
solutions.
We present in this paper the laser induced fluorescence measurements results on medicine solutions
(in bulk or in a micro-droplet form) that exhibit important modifications after the exposure at laser radiation. It
was evidenced that the exposures to laser beams/coherent optical radiation of some medicines solutions in
ultrapure water may produce molecular modifications in solutions. These slight modifications of the molecules
made them more efficient against bacteria strains.
The alert did not successfully save. Please try again later.
V. Nastasa, M. Boni, I. R. Andrei, L. Amaral, A. Staicu, M. L. Pascu, "Optical investigation of medicine solutions in micro-droplets form at interaction with laser radiation," Proc. SPIE 8098, Physical Chemistry of Interfaces and Nanomaterials X, 809815 (16 September 2011); https://doi.org/10.1117/12.898487