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ABSTRACT

We present results, obtained by rigorous computational approaches, for light of p- and s-polarization scattered
from two-dimensional, randomly rough, perfectly conducting, lossy metallic, and dielectric surfaces. The perfectly
conducting surfaces we study are characterized by an isotropic power spectrum of the surface roughness and by
an anisotropic power spectrum. The mean differential reflection coefficient and the full angular distribution of
the intensity of the scattered light are calculated for the perfectly conducting and metal surfaces. From the
latter calculations it is found that the computational approach used in these calculations conserves energy in the
scattering from a perfectly conducting and from a lossless metal surface with an error that is smaller than 0.5%.
Finally, we presents results obtained by a numerical, nonperturbative, solution of the reduced Rayleigh equation
for the scattering of p- and s-polarized light from two-dimensional randomly rough, metallic and dielectric
surfaces. We show that the results for the metallic surface are in good agreement with results for the same
metallic surface obtained by the rigorous computational approach.

Keywords: randomly rough surfaces; mean differential reflection coefficient; impedance boundary condition;
reduced Rayleigh equation; Müller integral equations; Franz formulas; Stratton–Chu equation; scattering

1. INTRODUCTION

Despite the significant advances that have been made in the last 15 years or so in approaches to the calculation
of the scattering of light from two-dimensional randomly rough perfectly conducting1–8 and penetrable6,9–14

surfaces, such calculations remain computationally intensive, and need further improvements in the methods
used in carrying them out. In this paper we review some of our recent work devoted to this problem, and present
some new results. The emphasis will be on the results obtained and their significance, but the methods by which
the results were obtained will be sketched out.

The physical system we consider in this paper consists of vacuum in the region x3 > ζ(x‖), where x‖ =
(x1, x2, 0), and the scattering medium in the region x3 < ζ(x‖) (Fig. 1). The latter will be a perfect conductor,
a metal, or a dielectric. The surface profile function ζ(x‖) is assumed to be a single-valued function of x‖ that is
at least twice differentiable with respect to x1 and x2, and constitutes a stationary, zero-mean, Gaussian random

process defined by
〈
ζ(x‖)ζ(x′

‖)
〉
= δ2W (x‖−x′

‖). The angle brackets here denote an average over the ensemble

of realizations of the surface profile function, and δ =
〈
ζ2(x‖)

〉 1
2 is the rms height of the surface. The power

spectrum of the surface roughness is defined by

g(k‖) =

∫
d2x‖ W (x‖) exp

(−ik‖ · x‖
)
, (1)

where k‖ = (k1, k2, 0). Each realization of the surface profile function is generated numerically by a two-
dimensional version of the filtering method used in [15], which is based on the power spectrum (1).

This paper is organized as follows. Scattering from two-dimensional randomly rough perfectly conducting
surfaces will be discussed in Section 2, both when the surface roughness is characterized by an an isotropic
power spectrum and when it is characterized by an anisotropic power spectrum. In Section 3 scattering from a
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Figure 1. A sketch of the studied scattering geometry. The figure also shows the coordinate system used, angles of
incidence (θ0, φ0) and scattering (θs, φs), and the corresponding transverse wavevectors k‖ and q‖, respectively.

two-dimensional randomly rough penetrable surface is considered, specifically scattering from a metallic surface
and from a dielectric surface. Section 4 is devoted to a presentation of results obtained from a purely numerical,
nonperturbative, solution of the reduced Rayleigh equation for the scattering of polarized light from a two-
dimensional, randomly rough, penetrable surface. A discussion of the results obtained, and conclusions drawn
from them, in Section 5, concludes this paper.

2. A PERFECTLY CONDUCTING SURFACE

2.1 Mathematical Formulation

The starting point for the calculation of the electromagnetic field scattered from a two-dimensional rough perfectly
conducting surface is the Stratton–Chu formula16 for the magnetic field in the vacuum

θ(x3 − ζ(x‖))H>(x|ω) = H(x|ω)inc + 1

4π

∫
d2x′

‖ [∇g0(x|x′)]|x′
3=ζ(x′

‖)
× JH(x′

‖|ω), (2)

where θ(z) is the Heaviside unit step function, and H(x|ω)inc is the magnetic component of the incident field.
In writing Eq. (2) we have assumed the time dependence exp(−iωt) for the field, but have not indicated this
explicitly.

The function g0(x|x′) is the scalar free-space Green’s function,

g0(x|x′) =
exp
[
iωc |x− x′|]
|x− x′| (3a)

=

∫
d2q‖
(2π)2

2πi

α0(q‖)
exp
[
iq‖ · (x‖ − x′

‖)
]
exp
[
iα0(q‖)|x3 − x′

3|
]
, (3b)

where ω and c are the angular frequency and speed of light in vacuum, respectively, while α0(q‖) = [(ω/c)2−q2‖]
1
2 ,

with Reα0(q‖) > 0, Imα0(q‖) > 0. The electric surface current JH(x‖|ω) is defined by JH(x‖|ω) = [n ×
H>(x|ω)]x3=ζ(x‖), where n = (−ζ1(x‖),−ζ2(x‖), 1) and ζj(x‖) ≡ ∂ζ(x‖)/∂xj (j = 1, 2). On evaluating Eq. (2)
at x3 = ζ(x‖) + η and at x3 = ζ(x‖)− η, where η is a positive infinitesimal, adding the resulting two equations,
and taking the vector cross product of the sum with n, we obtain the integral equation satisfied by JH(x‖|ω),

JH(x‖|ω) = 2J
(i)
H (x‖|ω) + 1

2π
P

∫
d2x′

‖ n×
{�∇g0(x|x′)

�× JH(x′
‖|ω)

}
, (4)
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where J
(i)
H (x‖|ω)inc = n×H(x|ω)inc|x3=ζ(x‖), P denotes the Cauchy principal value, and we have introduced the

definition

�
f(x|x′)

�
= f(x|x′)

∣∣∣∣x3=ζ(x‖)
x′
3=ζ(x′

‖)

. (5)

Because n ·JH(x‖|ω) = 0, only two components of JH(x‖|ω) are independent. We choose them to be JH(x‖|ω)1
and JH(x‖|ω)2, and obtain JH(x‖|ω)3 from

JH(x‖|ω)3 = ζ1(x‖)JH(x‖|ω)1 + ζ2(x‖)JH(x‖|ω)2. (6)

The two coupled, inhomogeneous, two-dimensional integral equations satisfied by JH(x‖|ω)1,2 are solved by
converting them into matrix equations. This is done by generating a realization of the surface profile function
on a grid of N2 points within a square region of the x1x2 plane of edge L, where the discretization intervals for
both directions are Δx = L/N . The integrals over this region are carried out by means of a two-dimensional
version of the extended midpoint method,17 and the values of JH(x‖|ω)1 and JH(x‖|ω)2 are calculated at the
points of this grid. The resulting matrix equations are solved by means of the biconjugate gradient stabilized
method.18 The values of JH(x‖|ω)3 are then obtained by the use of Eq. (6).

In these calculations the incident electric field has the form of a p- or s-polarized Gaussian beam, propagating
in the direction of k = (ω/c)(sin θ0 cosφ0, sin θ0 sinφ0,− cos θ0). In the case that k‖ = k‖x̂1, it is given by

Eν(x|ω)inc =

∫
q‖<ω

c

d2q‖ Ê(i)

ν (q−|ω) exp [iq− · x] W (q‖|k‖), (7)

where ν = p or s, q±(q‖, ω) = q‖ ± α0(q‖)x̂3, and W (q‖|k‖) is

W (q‖|k‖) =
w2

2π
exp

[
−w2

2
(q‖ − k‖)2

]
. (8)

For an incident field that is p polarized

Ê(i)

p (q−|ω) =
α0(q‖)x̂1 + q1x̂3

[q21 + α2
0(q‖)]

1
2

, (9a)

while for an incident field that is s polarized

Ê(i)

s (q−|ω) =
q1q2x̂1 − [q21 + α2

0(q‖)]x̂2 − q2α0(q‖)x̂3

ω
c [q

2
1 + α2

0(q‖)]
1
2

. (9b)

The scattered electric field, written in terms of JH(x‖|ω), is

E(x|ω)sc =

∫
d2q‖
(2π)2

[Ep(q+|ω)γ̂p(q+|ω) + Es(q+|ω)γ̂s(q+|ω)
]
exp [iq+ · x] , (10)

where

γ̂p(q+|ω) =
−α0(q‖)q̂‖ + q‖x̂3

ω/c
(11a)

γ̂s(q+|ω) = q̂‖ × x̂3, (11b)

and (ν = p, s)

Eν(q+|ω) = − (ω/c)

2α0(q‖)

∫
d2x‖ γ̂ν(q+|ω) · JH(x‖|ω) exp

[−iq‖ · x‖ − iα0(q‖)ζ(x‖)
]
. (12)
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The differential reflection coefficient (∂R/∂Ωs) is defined such that (∂R/∂Ωs)dΩs is the fraction of the total
time-averaged flux incident on the surface that is scattered into the element of solid angle dΩs about the scattering
direction (θs, φs). Since we are studying the scattering of light from a randomly rough surface, it is the average
of this quantity over the ensemble of realizations of the surface profile function that we need to calculate. The
mean differential reflection coefficient for the scattering of light of polarization β, the projection of whose wave
vector on the mean scattering surface is k‖, into light of polarization α, the projection of whose wave vector on
the mean scattering surface is q‖, is given by

〈
∂Rαβ

∂Ωs

〉
=

1

4π2

(ω
c

)3
cos2 θs

〈|Eα(q+|ω)|2
〉

pinc
, (13)

where for both polarizations of the incident light,

pinc = w4

∫
q‖<ω

c

d2q‖ α0(q‖) exp
[−w2(q‖ − k‖)2

]
. (14)

The dependence of the right-hand side of this equation on the polarization index β is through the dependence
of the amplitude Eα(q+|ω) on the surface current JH(x‖|ω) in Eq. (12). The surface current satisfies Eq. (4) in
which the inhomogeneous term depends on the incident field and hence on its polarization β = p, s. Therefore
Eα(q+|ω) depends implicitly on the polarization β of the incident field and consequently so does the mean
differential reflection coefficient.

If one is interested in nonspecular effects, it is the contribution to the mean differential reflection coefficient
from the light that has been scattered incoherently (diffusely) that is of interest. It is given by

〈
∂Rαβ

∂Ωs

〉
incoh

=
1

4π2

(ω
c

)3
cos2 θs

〈
|Eα(q+|ω)|2

〉
−
∣∣∣〈Eα(q+|ω)

〉∣∣∣2
pinc

. (15)

We now turn to some results obtained on the basis of this method.

2.2 Results for a Perfectly Conducting Surface

2.2.1 An Isotropic Roughness Power Spectrum

The first set of calculations were carried out for a two-dimensional randomly rough perfectly conducting surface
defined by an isotropic surface height autocorrelation function, i.e. one that depends on the vector x‖ only
through its magnitude. We have chosen for it the Gaussian form W (x‖) = exp(−x2

‖/a
2). The characteristic

length a is called the transverse correlation length of the surface roughness. The power spectrum of the surface,
given by Eq. (1), in this case has the form

g(k‖) = πa2 exp

(
−
k2‖a

2

4

)
. (16)

We have carried out calculations of the scattering of p-polarized light from such a surface with an rms height
δ = λ and a transverse correlation length a = 2λ, where λ is the wavelength of the incident field in vacuum.
The incident field had the form of a Gaussian beam, Eq. (7), with w = 4λ. The surface, covering an area
L2 = 16λ×16λ in the mean surface plane, was generated at the points of a 112×112 grid of mesh size Δx = λ/7
for both directions.

In Fig. 2 we plot the mean differential reflection coefficients as functions of the polar scattering angle θs for
the in-plane (φs = 0◦, 180◦) and out-of-plane (φs = ±90◦) co-(p → p) and cross-(p → s) polarized scattering
when a p-polarized Gaussian beam is incident on the surface at angles of incidence (θ0, φ0) given by (0◦, 0◦)
and (20◦, 0◦). Results obtained for 12 000 realizations of the surface profile function were averaged to obtain
these figures. The calculations for each realization of the surface profile function required 76 CPU seconds on an
Intel Core 2 CPU (Q9550) operating at 2.83 GHz and running the Linux operating system. For the roughness
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Figure 2. The mean differential reflection coefficients, 〈∂Rαβ/∂Ωs〉 (β → α), as functions of the polar scattering angle θs
for the in-plane (φs = φ0 or φs = φ0 + 180◦) (a) co-polarized (p → p) and (b) cross-polarized scattering (p → s), and
the out-of-plane (φs = φ0 ± 90◦) (c) co-polarized (p → p) and (d) cross-polarized scattering (p → s) of a p-polarized
incident beam (β = p) of width w = 4λ (θ0 = 0◦ and θ0 = 20◦; φ0 = 0◦) scattered from a Gaussian randomly rough
perfectly conducting surface. The Gaussian correlated surface had a correlation length a = 2λ and an rms height δ = λ. To
facilitate comparison between the various configurations presented in this figure, notice that we have used similar scales for
all ordinate axes. Moreover, to simplify the presentation of the figures, a convention was adopted where negative (positive)
values of θs correspond to φs = φ0 + 180◦ (φs = φ0). (After Ref. 7).

parameters assumed in these calculations the contribution to the mean differential reflection coefficient from the
light scattered coherently is smaller than the contribution from the light scattered incoherently by a factor of
approximately 10−4.

There is no single scattering contribution to the mean differential reflection coefficient in the cases of in-plane
cross-polarized [Fig. 2(b)] and out-of-plane co-polarized [Fig. 2(c)] scattering.1 What is plotted in these figures
therefore is due to multiple scattering only. The results plotted in Figs. 2(a) and 2(d) contain a contribution
from single-scattering processes.

The peaks in the retroreflection directions in the results for in-plane co-polarized scattering [Fig. 2(a)] are
enhanced backscattering peaks.19–22 However, as we will see from the full angular distribution of the intensity of
the scattered light, the structures seen as peaks in the results for in-plane cross-polarized scattering [Fig. 2(b)]
are not real peaks. The results that the out-of-plane co- and cross-polarized scattering [Figs. 2(c) and 2(d)] are
even functions of θs are consequences of the scattering geometry, namely that φ0 = 0◦, φs = ±90◦, and the
isotropy of the power spectrum of the surface roughness.

The full angular distribution of the intensity of the scattered light is presented as contour plots in Fig. 3,
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Figure 3. The complete angular distributions of the mean differential reflection coefficient, 〈∂Rαβ/∂Ωs〉, for the scattering
of an β-polarized Gaussian beam incident on the surface at polar angle θ0 = 20◦ and azimuthal angle φ0 = 0◦. The
perfectly conducting rough surface was characterized by a Gaussian height distribution of rms-value δ = λ and a Gaussian
correlation function of transverse correlation length a = 2λ. The incident beam was p polarized in Figs. 3(a)–(c) [left
column], and s polarized in Figs. 3(d)–(f) [right column]. Moreover, in the top two figures [Figs. 3(a) and (d)] the
polarization of the scattered light was not recorded; in Figs. 3(b) and (e) [central row] only p-polarized scattered light was
recorded; while the bottom two figures correspond to recording only s-polarized scattered light [Figs. 3(c) and (f)]. The
rough surface, covering an area 16λ× 16λ, was discretized at a grid of 112× 112 points corresponding to a discretization
interval λ/7 for both directions. The presented figures were obtained by averaging results for the differential reflection
coefficient obtained for 12 000 surface realizations. (After Ref. 7).

which correspond to polar and azimuthal angles of incidence (θ0, φs) = (20◦, 0◦), when the incident beam is
p polarized and the scattered light is p and s polarized. In Fig. 3(a) we present a contour plot of the mean
differential reflection coefficient for the scattering of p-polarized light into both p- and s-polarized scattered light,
i.e. the polarization state of the scattered light was not recorded. It is seen that there is a pronounced enhanced
backscattering peak in the retroreflection direction at θs = 20◦ and φs = 180◦. From Figs. 3(b) and 3(c),
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where only p-polarized light or s-polarized scattered light is recorded, respectively, we see that the co-polarized
scattering displays a structure that is elongated along the plane of incidence, while the cross-polarized scattering
has a scattering pattern that is elongated perpendicular to this plane. In principle an enhanced backscattering
peak should be present in the retroreflection direction in both co- and cross-polarized scattering.20–22 However,
for the roughness parameters assumed in this work, instead of a well-defined peak in the retroreflection direction
we see a ridge of constant enhanced intensity in parts of the region q1 < 0, forming a semicircle of constant
polar scattering angle θs ≈ θ0 = 20◦, with 90◦ < φs < 270◦ [Fig. 3(c)]. In precisely the retroreflection direction,
θs = 20◦ and φs = 180◦, there is little, if any, additional enhancement in the cross-polarized scattering compared
to the intensities at other values of φs in the interval [90◦, 270◦]. We speculate that the enhancement ridge seen
in Fig. 3(c) is a constructive interference effect similar to the effect underlying enhanced backscattering.

We note that if we had examined only the in-plane and out-of-plane results for the same angle of incidence,
the peak observed in Fig. 2(b) for θ0 = 20◦ could easily have been interpreted as the well-localized feature in
the retroreflection direction similar to the one present for co-polarized scattering in Fig. 3(b). Thus the angular
distributions of the intensities of the scattered light, such as those presented in Fig. 3, can provide information
that helps in better understanding multiple scattering phenomena.

When the incident beam was s polarized, we obtain the results presented in Figs. 3(d)–(f). Also here an
enhanced backscattering peak is observed, and the intensity distributions of the co- and cross-polarized scattered
light are oriented along and perpendicular to the plane of incidence, respectively.

A necessary, but not sufficient, criterion for the accuracy of a scattering calculation is that energy be conserved
in the scattering process. In scattering from a perfectly conducting surface this requires that the total time-
averaged scattered flux must equal the total time-averaged incident flux. This requirement can be stated as

Uβ(θ0, φ0) =
∑

α=p,s

∫
dΩs

〈
∂Rαβ

∂Ωs

〉
= 1 β = p, s. (17)

Under the conditions assumed in obtaining the results presented in Figs. 2 and 3, the value of Up(θ0, φ0) and
Us(θ0, φ0) were calculated to be 0.9962 and 0.9966, respectively. Consequently, the computational approach
outlined in Section 2 conserves energy in the scattering process with an error that is smaller than 0.5%. This
error is expected to be reduced further by decreasing the sampling interval Δx and/or by increasing the area
(L2) of the the mean surface.

2.2.2 An Anisotropic Roughness Power Spectrum

The existing computational studies of the scattering of light from two-dimension randomly rough perfectly
conducting surfaces1–7 have been based on the assumption that the surface profile function ζ(x‖) is a stationary,
zero-mean, isotropic, Gaussian random process. Very little work has been devoted to the case where ζ(x‖)
is an anisotropic random process. In this section we present results obtained by the rigorous computational
approach described in Section 2.1 for the light scattered from a two-dimensional, randomly rough, perfectly
conducting surface defined by a surface profile function that is a stationary, zero-mean, anisotropic, Gaussian
random process.

The surface we assume in these calculations is defined by a surface height autocorrelation function that has
an anisotropic Gaussian form, W (x‖) = exp[−(x1/a1)

2−(x2/a2)
2] where, for specificity, we assume that a1 < a2.

Thus, we will refer to the x1 and x2 axes as the minor and major axes of the anisotropy, respectively. The power
spectrum of the surface roughness, defined by Eq. (1), in the present case has the form

g(k‖) = πa1a2 exp

[
−k21a

2
1

4
− k22a

2
2

4

]
, (18)

and is elongated along the minor anisotropy axis.

To provide a reference against which results for the angular distribution of the fields scattered from an
anisotropic random surface can be compared, we first present, in Fig. 4, contour plots of the angular distributions
of the fields scattered from an isotropic random surface. The incident field is a p-polarized beam with the width
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Figure 4. A p-polarized beam of wavelength λ and width w = 4λ is scattered from an isotropic perfectly conducing rough
surface characterized by a Gaussian height distribution of rms-value δ = λ/2 and a Gaussian correlation function of
correlation lengths a1 = a2 = λ. The panels show contour plots of the full angular distributions of the mean differential
reflection coefficient, 〈∂Rαp/∂Ωs〉, obtained by a rigorous computer simulation approach for the scattering of the beam
incident on the rough surface at a polar angle θ0 = 20◦ and an azimuthal angle φ0 = 45◦. The three panels correspond
to various configurations for the polarization of the scattered light. They are: (a) the polarization of the scattered light
is not recorded [α = p, s]; (b) only p-polarized scattered light is measured [α = p]; and (c) only s-polarized scattered
light is recorded [α = s]. The rough surface, covering an area 16λ × 16λ, was discretized on a grid of 112 × 112 points
corresponding to a discretization interval λ/7 for both directions. The presented figures were obtained by averaging results
for the differential reflection coefficient obtained for 6 000 surface realizations. (After Ref. 8).

parameter w = 4λ, where λ is the wavelength of the field. The polar and azimuthal angles of incidence are
(θ0, φ0) = (20◦, 45◦). The surface is characterized by the Gaussian power spectrum (16), with a correlation
length a = λ. The rms height of the surface is δ = λ/2. The surface was generated on the same grid as the
surface studied in Section 2.2.1. The mean differential reflection coefficient was obtained as the arithmetic average
of results obtained for 6000 realizations of the surface profile function. The three panels in this figure correspond
to different choices for the polarization of the scattered light. Thus, in obtaining Fig. 4(a) the polarization of
the scattered light was not recorded; in obtaining Fig. 4(b) only the p-polarized component of the scattered light
was recorded; while in obtaining Fig. 4(c) only the s-polarized component of the scattered light was recorded.

We see from these results that the co-polarized (p→ p) scattering has a dipole-like angular distribution with
the main intensity oriented parallel to the plane of incidence [Fig. 4(b)]. In contrast the cross-polarized (p→ s)
scattering has its main intensity distribution oriented perpendicular to the plane of incidence [Fig. 4(c)]. In both
cases the intensity distributions are symmetric with respect to the plane of incidence, and the scattered intensity
patterns simply rotate as the azimuthal angle of incidence φ0 is changed. When the polarization of the scattered
light is not recorded [Fig. 4(a)], the pronounced peak in the retroreflection direction (θs = θ0, φs = φ0 +180◦) is
the enhanced backscattering peak.
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Figure 5. Same as Fig. 4 with the only difference that now the rough surface is weakly anisotropic and characterized by
the correlation lengths a1 = λ and a2 = 1.5λ. (After Ref. 8).

Turning now to the scattering from an anisotropic surface, in Fig. 5 we present contour plots of the full angular
distributions of the mean differential reflection coefficients when the randomly rough surface is defined by the
power spectrum (18) with a1 = λ and a2 = 1.5λ. The remaining experimental and computational parameters
have the values used in obtaining the results presented in Fig. 4. The three panels correspond to different choices
for the polarization of the scattered light. In obtaining Fig. 5(a) the polarization of the scattered light was not
recorded; in obtaining Fig. 5(b) only the p-polarized component of the scattered light was recorded; while in
obtaining Fig. 5(c) only the s-polarized component of the scattered light was recorded. Unlike in the scattering
of light from an isotropic surface, the intensity distribution of light scattered from an anisotropic surface in
general is not symmetric with respect to the plane of incidence. It is only when the plane of incidence is parallel
to either the minor or the major axis of the anisotropy that this type of symmetry obtains.

The dipole-like angular intensity patterns in Figs. 5(b) and 5(c) are no longer symmetric with respect to
the plane of incidence, as their isotropic equivalents are. This asymmetry is particularly pronounced in the
cross-polarized scattering [Fig. 5(c)]. It is explained by the fact that the cross-polarized component of the mean
differential reflection coefficient to the lowest (second) order in the surface profile function is proportional to

g(q‖ − k‖) [(q̂‖ × k̂‖)3]2, where q‖ = (ω/c) sin θs(cosφs sinφs, 0).
23 When the power spectrum g(k‖) is given by

Eq. (18), this function is not symmetric with respect to the plane of incidence.

The co-polarized scattering pattern [Fig. 5(b)] is explained in a similar fashion. In this case the contribution
to the mean differential reflection coefficient of the lowest order in the surface profile function contains terms
proportional to g(q‖ − k‖)(q̂‖ − k̂‖)m with m = 1, 2.23 The maxima of these functions are in the forward
scattering direction and, for an anisotropic surface, move away from the plane of incidence toward the minor
axis of the anisotropy.
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3. A PENETRABLE SURFACE

3.1 Mathematical Formulation

In calculating the electromagnetic field scattered from a two-dimensional randomly rough surface a convenient
starting point are the Franz formulas of electromagnetic scattering theory.24,25 These formulas for the magnetic
and electric fields in the vacuum region x3 > ζ(x‖) can be written as

H>(x|ω) = H(x|ω)inc + 1

4π
∇×

∫
d2x′

‖ g0(x|x′)|x′
3=ζ(x′

‖)
JH(x′

‖|ω)

− ic

4πω
∇×∇×

∫
d2x′

‖ g0(x|x′)|x′
3=ζ(x′

‖)
JE(x

′
‖|ω) (19a)

E>(x|ω) = E(x|ω)inc + 1

4π
∇×

∫
d2x′

‖ g0(x|x′)|x′
3=ζ(x′

‖)
JE(x

′
‖|ω)

+
ic

4πω
∇×∇×

∫
d2x′

‖ g0(x|x′)|x′
3=ζ(x′

‖)
JH(x′

‖|ω). (19b)

The Franz formulas for the magnetic and electric fields in the scattering medium x3 < ζ(x‖) can be written as

H<(x|ω) = − 1

4π
∇×

∫
d2x′

‖ gε(x|x′)|x′
3=ζ(x′

‖)
JH(x′

‖|ω)

+
ic

4πω
∇×∇×

∫
d2x′

‖ gε(x|x′)|x′
3=ζ(x′

‖)
JE(x

′
‖|ω) (20a)

E<(x|ω) = − 1

4π
∇×

∫
d2x′

‖ gε(x|x′)|x′
3=ζ(x′

‖)
JE(x

′
‖|ω)

− ic

4πωε(ω)
∇×∇×

∫
d2x‖ gε(x|x′)|x′

3=ζ(x′
‖)
JH(x′

‖|ω). (20b)

In writing these equations we have introduced the vectors

JH(x‖|ω) =
[
n×H>(x|ω)]∣∣

x3=ζ(x‖)
, (21a)

=
[
n×H<(x|ω)]∣∣

x3=ζ(x‖)
, (21b)

and

JE(x‖|ω) =
[
n×E>(x|ω)]∣∣

x3=ζ(x‖)
, (22a)

=
[
n×E<(x|ω)]∣∣

x3=ζ(x‖)
. (22b)

The vector n has been defined in Section 2.1. The scalar free-space Green’s function for an infinite scattering
medium is defined by

gε(x|x′) =
exp [− |x− x′| /d(ω)]

|x− x′| (23a)

=

∫
d2k‖
(2π)2

2π

β(k‖)
exp
[
ik‖ · (x‖ − x′

‖)
]
exp
[−β(k‖)|x3 − x′

3|
]
, (23b)

where

β(k‖) =

[
k2‖ +

1

d2(ω)

] 1
2

, Reβ(k‖) > 0, Imβ(k‖) < 0, (24)
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and d(ω) = (c/ω)[−ε(ω)]− 1
2 , Re d(ω) > 0, Im d(ω) > 0, while ε(ω) is the dielectric function of the scattering

medium.

To obtain the equations satisfied by JH(x‖|ω) and JE(x‖|ω) we proceed as follows. We take the vector cross
product of Eqs. (19a) and (20a) with the vector n, evaluate each product at x3 = ζ(x‖)+ η, and x3 = ζ(x‖)− η,
respectively, where η is a positive infinitesimal, and add the resulting equations. In this way we obtain the
equation

JH(x‖|ω) = JH(x‖|ω)inc + 1

4π
P

∫
d2x′

‖
�
n× {∇× [g0(x|x′)− gε(x|x′)]JH(x′

‖|ω)}
�

− ic

4πω

∫
d2x′

‖
�
n× {∇×∇× [g0(x|x′)− gε(x|x′)]JE(x

′
‖|ω)}

�
, (25a)

where JH(x‖|ω)inc = n×H(x|ω)inc|x3=ζ(x‖), and P denotes the Cauchy principal value.

If we next take the vector cross product of Eq. (19b) and of ε(ω) times Eq. (20b) with the vector n, evaluate
each product at x3 = ζ(x‖) + η, and at x3 = ζ(x‖)− η, respectively, and add the resulting equations, we obtain

JE(x‖|ω) = 2
JE(x‖|ω)inc
1 + ε(ω)

+
2

4π[1 + ε(ω)]
P

∫
d2x′

‖
�
n× {∇× [g0(x|x′)− ε(ω)gε(x|x′)]JE(x

′
‖|ω)}

�

+
2ic

4πω[1 + ε(ω)]

∫
d2x′

‖
�
n× {∇×∇× [g0(x|x′)− gε(x|x′)]JH(x′

‖|ω)}
�
, (25b)

where JE(x‖|ω)inc = n×E(x|ω)inc|x3=ζ(x‖).

In obtaining Eq. (25) we have used the results

lim
η→0+

∫
d2x′

‖ n(x‖)×
⎧⎨
⎩∇×

⎡
⎣g(x|x′)

∣∣∣∣x3=ζ(x‖)
x′
3=ζ(x′

‖)±η

J(x′
‖|ω)

⎤
⎦
⎫⎬
⎭

= ±2π J(x‖|ω) + P

∫
d2x′

‖ n(x‖)×
{�∇× [g(x|x′)

�
J(x′

‖|ω)]
}
, (26)

where g(x|x′) is either g0(x|x′) or gε(x|x′), J(x‖|ω) is either JH(x‖|ω) or JE(x‖|ω), and P denotes the Cauchy
principal value. Equations of the type of Eq. (25) are called Müller integral equations.26,27 These equations are
convenient for numerical calculations. Because g0(x|x′) and gε(x|x′) have the same limiting behavior as x′ → x,
the most divergent terms in the integrands, associated with the second derivatives of these Green’s functions,
cancel, rendering the resulting integrals integrable. The terms containing the first derivatives of the Green’s
functions possess integrable singularities.

From the definitions of JH,E(x‖|ω) it follows that n · JH,E(x‖|ω) = 0. Therefore JH,E(x‖|ω) have only two
independent elements, which we choose to be JH,E(x‖|ω)1 and JH,E(x‖|ω)2. The elements JH,E(x‖|ω)3 are then
obtained from the analogues of Eq. (6). Equations (25) thus provide a system of four coupled, inhomogeneous
two-dimensional integral equations for JH,E(x‖|ω)1,2.

By the use of a local impedance boundary condition,28

JE(x‖|ω)i = Kij(x‖|ω)JH(x‖|ω)j (i = 1, 2), (27)

the dependence on JE(x‖|ω)1,2 can be removed from Eq. (25a), yielding a pair of coupled, inhomogeneous,
two-dimensional, integral equations for JH(x‖|ω)1,2. These equations are converted into matrix equations in
the manner described in Section 2, which are then solved by the biconjugate gradient stabilized method. The
solutions are used to calculate the contribution to the mean differential reflection coefficient from the light
scattered incoherently, by the use of the expressions obtained in Section 2.
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Figure 6. The mean differential reflection coefficients, 〈∂Rαp/∂Ωs〉 (p → α) for a p-polarized incident beam of wavelength
λ = 632.8nm and width w = 4λ, whose polar angle of incidence is θ0 = 20◦, as functions of the polar scattering angle
θs for the (a) in-plane and (b) out-of-plane scattering. Negative values for θs are interpreted as in the caption to Fig. 2.
The scattering system assumed in obtaining these results consisted of a silver substrate (ε(ω) = −16 + i1.088) separated
from vacuum by a Gaussian-correlated randomly rough surface of rms-height δ = λ/4 and correlation length a = λ/2.
The randomly rough surface covered an area of 16λ×16λ and the discretization length used in the numerical calculations
was Δx = λ/7 thus resulting in a 112× 112 grid of x‖ values. A total of 5 000 surface realizations were used to calculate
〈∂Rαp/∂Ωs〉. (After Ref. 14).

3.2 Results for a Penetrable Surface

3.2.1 A Metallic Surface

We first present results for scattering from a metallic surface. We have carried out numerical simulations for the
scattering of a p-polarized beam of light of wavelength λ = 632.8 nm and width parameter w = 4λ, incident on
a randomly rough silver surface. The dielectric function of silver at this wavelength is ε(ω) = −16.00+ i1.088.29

The surface roughness is characterized by the Gaussian power spectrum (16) with a correlation length a = λ/2,
and an rms height δ = λ/4. The rough surface was assumed to cover an area 16λ× 16λ on the mean scattering
surface, and the discretization length Δx was λ/7 on a 112× 112 grid of x‖ values.

In Fig. 6 we present the mean differential reflection coefficients as functions of the polar scattering angle θs
for the in-plane [Fig. 6(a)] and out-of-plane (φs = ±90◦) [Fig. 6(b)], co-(p→p) and cross-(p→s) scattering of
the beam when the polar and azimuthal angles of incidence (θ0, φ0) are (20◦, 0◦). The results obtained from
Np = 5000 realizations of the surface profile function were averaged to obtain these results. The calculations
required 96 CPU seconds on a 2.67 GHz Intel i7 CPU for each realization of the surface profile function. The
peak at θs = −20◦ in the mean differential reflection coefficient for in-plane co-polarized scattering plotted in
Fig. 6(a) is the enhanced backscattering peak.

For the same parameters we present in Figs. 7(a)–(c) the full angular distribution of the mean differential
reflection coefficient when the polarization state of the scattered light is not recorded [Fig. 7(a)], when only the
p-polarized component of the scattered light is recorded [Fig. 7(b)], and when only the s-polarized component
of the scattered light is recorded [Fig. 7(c)]. Similar results, but for an s-polarized incident beam, are presented
in Figs. 7(d)–(f). The peaks observed in Figs. 7(a), 7(b), 7(d), and 7(f) in the retroreflection direction (θs =
θ0, φs = φ0 + 180◦) are the enhanced backscattering peaks.

From a knowledge of the full angular distribution of the mean differential reflection coefficient, the conserva-
tion of energy in the scattering process can be checked by means of Eq. (17). For this purpose the full angular
distribution of the mean differential reflection coefficient was calculated for “nonabsorbing” silver, i.e. for the
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Figure 7. Similar to Fig. 3, but now the scattering medium is silver, and therefore penetrable. The roughness and numerical
parameters assumed in obtaining these results are identical to those used to obtain the results of Fig. 6.

case in which the imaginary part of its dielectric function was set equal to zero, so that ε(ω) = −16.00. For the
parameters used in obtaining the results presented in Figs. 6 and 7 it was found that Up,s(20

◦, 0◦) > 0.995 , a
result that demonstrates the accuracy of our computational approach.

In order to obtain such a good unitarity value it was necessary to treat not only the diagonal elements of the
matrix versions of Eq. (25) accurately, but also close-to-diagonal elements, because of the singular behavior of
the Green’s functions for small arguments. The need to treat close-to-diagonal matrix elements more accurately
than matrix elements between more widely separated points in the solution of the volume integral equation
arising in scattering from finite-sized objects has also been noted.30 If the extended midpoint method was used
in calculating the off-diagonal matrix elements, while the diagonal elements were treated exactly, as in [6] and
[9], a value of Up(20

◦, 0◦) = 0.834 was obtained. The ability to calculate unitarity values, and the need to treat
close-to-diagonal matrix elements accurately to obtain good unitarity values, are some of the main results of this
work.

Proc. of SPIE Vol. 8172  817209-13



4. SOLUTION OF THE REDUCED RAYLEIGH EQUATIONS

4.1 Mathematical Formulation

The calculation of the electromagnetic field scattered from a randomly rough surface of a penetrable medium
is greatly simplified if the field in the scattering medium does not need to be taken into account. The use of
an impedance boundary condition at the interface between the medium of incidence and the scattering medium
accomplishes this, so that only the field in the medium of incidence needs to be determined.

The same result can also be achieved by the use of the reduced Rayleigh equation for calculating the scattered
field. In this section we present this equation and describe its numerical solution.

We begin by writing the electric field in the vacuum region x3 > ζ(x‖) as the sum of an incident and a

scattered field, E(x; t) =
[
E(i)(x|ω) +E(s)(x|ω)] exp(−iωt), where

E(i)(x|ω) =
{
c

ω

[
α0(k‖)k̂‖ + k‖x̂3

]
E(i)p (k‖) + [k̂‖ × x̂3] E(i)s (k‖)

}
exp
[
ik‖ · x‖ − iα0(k‖)x3

]
, (28a)

E(s)(x|ω) =
∫

d2q‖
(2π)2

{
c

ω

[−α0(q‖)q̂‖ + q‖x̂3

] E(s)p (q‖) + [q̂‖ × x̂3] E(s)s (q‖)
}
exp
[
iq‖ · x‖ + iα0(q‖)x3

]
. (28b)

Note that the factors appearing in Eq. (28) in front of E(i)α (k‖) and E(s)α (q‖) (α = p, s) are the polarization
vectors as defined previously in Section 2.1, but now written out explicitly. Maxwell’s equations imply a linear

relation between the amplitudes E(s)α (q‖) and E(i)β (k‖) of the form (α = p, s, β = p, s)

E(s)α (q‖) =
∑
β

Rαβ(q‖|k‖)E(i)β (k‖). (29)

The contribution to the mean differential reflection coefficient from the incoherent (diffuse) component of the
scattered light, when incident light of β polarization (whose wave vector has the projection k‖ on the mean
scattering surface) into light of α polarization (whose wave vector has the projection q‖ on the mean scattering
surface), is given by〈

∂Rαβ

∂Ωs

〉
incoh

=
1

S

( ω

2πc

)2 cos2 θs
cos θ0

[〈 ∣∣Rαβ(q‖|k‖)
∣∣2 〉− ∣∣∣〈Rαβ(q‖|k‖)

〉∣∣∣2] , (30)

where S is the area of the plane x3 = 0 covered by the rough surface.

It was shown by Celli and his colleagues32 by the use of the Rayleigh hypothesis,33 the extinction theorem,34

and the vectorial equivalent of the Kirchhoff integral,35 that the scattering amplitudes Rαβ(q‖|k‖) satisfy the
matrix integral equation∫

d2q‖
(2π)2

I(α(p‖)− α0(q‖)|p‖ − q‖)
α(p‖)− α0(q‖)

M(p‖|q‖)R(q‖|k‖) = −
I(α(p‖) + α0(k‖)|p‖ − k‖)

α(p‖) + α0(k‖)
N(p‖|k‖), (31)

with Rpp and Rps forming the first row of the matrix R, where

I(γ|Q‖) =

∫
d2x‖ exp

[−iγζ(x‖)
]
exp
[−iQ‖ · x‖

]
, (32)

and α(p‖) = [ε(ω)(ω/c)2 − p2‖]
1
2 , with Reα(p‖) > 0, Imα(p‖) > 0. The matrices M(p‖|q‖) and N(p‖|k‖) are

given by

M(p‖|q‖) =

(
[p‖q‖ + α(p‖)p̂‖ · q̂‖α0(q‖)] −ω

c α(p‖) [p̂‖ × q̂‖]3
ω
c [p̂‖ × q̂‖]3 α0(q‖) ω2

c2 p̂‖ · q̂‖

)
(33a)

and

N(p‖|k‖) =

(
[p‖k‖ − α(p‖)p̂‖ · k̂‖α0(k‖)] −ω

c α(p‖) [p̂‖ × k̂‖]3
−ω

c [p̂‖ × k̂‖]3 α0(k‖) ω2

c2 p̂‖ · k̂‖

)
. (33b)
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Figure 8. Full angular intensity distribution of the light scattered incoherently from a two-dimensional randomly rough
silver surface calculated by solving the reduced Rayleigh equations. Light of either p (left column) or s polarization
(right column) is incident on the surface at angles of incidence (θ0, φ0) = (25◦, 45◦). The wavelength (in vacuum) of the
incident light is λ = 632.8 nm for which frequency ω = 2π/λ the dielectric function of silver is ε(ω) = −16.0 + 1.088i.
The white dots indicate the position of the specular direction. The surface parameters assumed in these calculations are
L = 25λ; δ = λ/40; and a = λ/4. The surface was discretized so that Q = 6.4ω/c or equivalently Δx = π/Q ≈ 0.0781λ.
Figures 8(a)–(c) correspond to a p-polarized plane incident wave, while in Figs. 8(d)–(f) the incident plane wave is s
polarized. In Figs. 8(a) and (d) all scattered light is recorded, i.e. no distinction is made between scattered p- and
s-polarized light. However, in Figs. 8(b) and (e) only the scattered p-polarized light is recorded, while Figs. 8(c) and (f)
include only s-polarized scattered light. The presented figures were obtained by averaging the results for the differential
reflection coefficient obtained for Np = 10 000 surface realizations.

Although purely numerical, nonperturbative solutions of the reduced Rayleigh equations for the scattering
of light from one-dimensional randomly rough clean metal surfaces36,37 and coated perfectly conducting sur-
faces38,39 have been carried out, up to now Eq. (31) has been solved only by small-amplitude perturbation
theory through terms of third order in the surface profile fuction.23,40,41 Here we present some preliminary
results for the mean differential reflection coefficient obtained by a purely numerical, nonperturbative solution of
Eqs. (31)–(33). This was done by generating a realization of the surface profile as this was done in the preceding
two sections, and evaluating the function I(γ|Q‖) by expanding the integrand in Eq. (32) in powers of ζ(x‖), and
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calculating the Fourier transform of ζn(x‖) by the Fast Fourier Transform. As in previous sections, the random
surface covered a square region of the x1x2 plane of edge L, and a grid of N2 points was created within this
square so that the (linear) sampling interval is Δx = L/N . The infinite limits of integration in Eq. (31) were
replaced by finite ones: |q1| < Q/2, |q2| < Q/2 where Q = π/Δx. A quadratic grid within the square region
of the q1q2 plane of edge Q was constructed with a grid constant Δq = 2π/L. The integral over this region
in Eq. (31) was carried out by a two-dimensional version of the extended midpoint method, and the values of
Rαβ(q‖|k‖) were calculated for values of q‖ at the points of this grid for a given value of k‖, which was a point
on the same grid. The resulting matrix equations were solved by LU factorization. This is a slower solution
method than the biconjugate gradient stabilized method, but has the advantage of being able to handle multiple
right-hand sides, i.e. different angles of incidence, more-or-less with no extra addition to the computational time.
With the reflection amplitudes, Rαβ(q‖|k‖), available, the differential reflection coefficient was then calculated
by the use of Eq. (30).

4.2 Results Obtained by the Solution of the Reduced Rayleigh Equations

4.2.1 A Metallic Surface

As the first example of the application of this approach to the scattering of light from a penetrable surface we
apply it to the scattering of a p- or s-polarized plane wave of wavelength λ = 632.8 nm incident on a silver
surface. The dielectric function of silver at this wavelength is ε(ω) = −16 + i1.088.29 The roughness of the
surface was characterized by the Gaussian power spectrum, Eq. (16), where the transverse correlation length was
given the value a = λ/4, while the rms height of the surface was δ = λ/40. In the calculations the rough surface
was assumed to cover an area of 25λ × 25λ of the plane x3 = 0, while for the wavenumber cut-off we assumed
Q = 6.4ω/c, which corresponds to a spatial discretization interval of Δx = π/Q ≈ 0.0781λ (for both directions).

In Fig. 8 we present contributions to the mean differential reflection coefficients from the light scattered
incoherently as functions of q1 and q2 when a plane wave is incident on the surface at angles (θ0, φ0) = (25◦, 45◦).
Figure 8(a) corresponds to a p-polarized incident plane wave being scattered by the rough surface into both p-
and s-polarized light, i.e. the polarization state of the scattered light was not recorded. However, in Figs. 8(b)
and 8(c) contour plots of the same quantity are presented for the cases where only p-polarized or s-polarized
scattered light, respectively, are recorded. Similar results are presented in Figs. 8(d)–(f) for the case when the
incident light is s-polarized. An arithmetic average of results obtained for Np = 10 000 realizations of the surface
profile function was carried out to produce Fig. 8.

By artificially putting the imaginary part of the dielectric constant of the metal to zero, Im ε(ω) ≡ 0, so
that there is no absorption in the scattering system, it has been found that the numerical method used to solve
the reduced Rayleigh equation, Eq. (31), conserves energy with an error smaller than 0.5% for the parameters
assumed here.

The numerical calculations used to obtain the results of Fig. 8 required for each realization of the surface
profile function approximately 8.8 cpu hours on a single 12-core 2.4 GHz AMD Opteron computer node and
using approximately 20 GB of memory.

The calculations whose results are presented in Fig. 8 and which were performed by solving numerically the
reduced Rayleigh equations (31), could also have been done by solving the Müller equations, as was discussed
in Section 3. In order to compare the two approaches, we present in Fig. 9 the results obtained by these two
methods for the contributions to the mean differential reflection coefficients from the light scattered incoherently
as functions of the polar scattering angle θs for the in-plane (φs = 0◦, 180◦) and out-of-plane (φs = ±90◦)
co-(s→ s) and cross-(s→ p) polarized scattering when an s-polarized wave is incident on the surface at angles
of incidence (θ0, φ0) = (25◦, 0◦). The roughness parameters assumed in obtaining these results are identical to
those assumed in obtaining Fig. 8. The numerical parameters used to obtain these results were those of Fig. 8
when using the reduced Rayleigh equation. However, when solving the Müller equations, a Gaussian beam of
width (w = 4λ) was assumed to be incident on the surface, which was discretized with an interval Δx = λ/7 (in
both directions). It is observed from Fig. 9 that the two approaches produce quantitatively similar results. The
minor differences between the results of the two approaches we believe are due to the differences in the areas
covered by the rough surfaces, and to the differences in the discretization intervals, assumed in the two sets of
calculations, which have not been optimized as yet.
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From the results presented in Figs. 8 and 9, we can draw the conclusions that a purely numerical, nonper-
turbative solution of the reduced Rayleigh equation yields accurate results for the mean differential reflection
coefficient that are in good agreement with those obtained by the use of the Müller equations.

4.2.2 A Dielectric Surface

The reduced Rayleigh equation (31) can also be used for calculating the field scattered from a dielectric surface.
We apply it here to calculate the contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light when a p- or s-polarized plane wave whose wavelength in vacuum is λ = 632.8 nm
is incident at (θ0, φ0) = (27.5◦, 45◦) on the surface of a dielectric medium whose dielectric constant is assumed
to be εd = 2.64 (photoresist). The results are presented in Fig. 10. The randomly rough surface had an
rms roughness of δ = 3λ/200 = 0.015λ and it covered a 20λ × 20λ area in the x3 = 0 plane. Moreover, the
wavenumber cut-off assumed in these calculations was Q = 8ω/c, corresponding to a discretization interval of
Δx = π/Q = 0.0625λ. Except for these differences, the remaining roughness and computational parameters were
the same as the ones assumed in the calculations that produced Fig 8.

By comparing Figs. 8 and 10 it is observed that the overall structure of the angular distributions of the
intensity of the light scattered from a metal and dielectric is rather similar, and that, as expected, the scattered
intensity for the metallic surface is stronger (by a factor of about 70) than that for the dielectric surface.

5. DISCUSSION AND CONCLUSIONS

We have shown that the use of the method of moments and the biconjugate gradient stabilized method provides
a formally exact solution to the scattering of p- and s-polarized light from a two-dimensional randomly rough
perfectly conducting surface, with a modest expenditure of computational time. The addition of an impedance
boundary condition on a two-dimensional rough surface to these two methods has been shown to provide a
formally exact solution to the scattering of polarized light from two-dimensional randomly rough metallic surfaces,
also with a modest expenditure of computational time.

Figure 9. Comparison of the mean differential reflection coefficients for the scattering of s polarized waves from a rough
silver surface with the roughness parameters given in the caption of Fig. 8. The results were obtained by two different
numerical approaches: the solution of the reduced Rayleigh equation (solid lines), and by the use of the rigorous approach
(dashed lines). The numerical parameters and number of surface realizations assumed when using the former approach
were those used to obtain the results presented in Fig. 8. However, when using the rigorous approach, the parameters
given in the caption to Fig. 6 were assumed with the exception that now θ0 = 25◦, L = 20λ, and only a small number of
surface realizations were used (Np = 750) to obtain these results.
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Figure 10. Full angular intensity distribution of the light scattered incoherently from a two-dimensional randomly rough
dielectric surface calculated by solving the reduced Rayleigh equations. The dielectric substrate was taken to be photoresist
which at the frequency of the incident light λ = 632.8 nm is characterized by a dielectric constant ε(ω) = 2.64. The angles
of incidence assumed are (θ0, φ0) = (27.5◦, 45◦), and the white dots indicate the position of the specular direction. These
figures were obtained by averaging results for the scattered intensity obtained for Np = 6000 surface realizations. The
surface parameters assumed in these calculations were L = 20λ; δ = 3λ/200 = 0.015λ; and a = λ/4. The surface
discretization was done so that Q = 8ω/c, or equivalently, Δx = π/Q = 0.0625λ. The remaining parameters and the
organization of the sub-figures are identical to those of Fig. 8.

The computational methods employed in these calculations have made it possible to obtain a formally exact
full angular distribution of the intensity of the light scattered from a strongly rough random surface. In the case
of scattering from a perfectly conducting surface, and from a metallic surface when the imaginary part of its
dielectric function is set equal to zero, knowledge of the full angular distribution of the intensity of the scattered
light enables the conservation of energy in the scattering process to be checked. It was found to be satisfied with
an error smaller than 0.5%, a result that testifies to the accuracy of the methods used in our calculations and
the adequacy of the discretization of the mean scattering surface employed in them.

We have also presented results obtained from a rigorous numerical solution of the reduced Rayleigh equation
for the scattering of p- and s-polarized light from a penetrable surface. These results demonstrate the feasibility
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of using this equation in studies of the scattering of light from weakly rough surfaces. The good agreement
between the results obtained by the solution of the reduced Rayleigh equation and those obtained by the use
of the rigorous computational method indicates that the simpler approach yields accurate results for scattering
from surfaces that are not very rough. The limits of validity of this equation have yet to be determined.

The success of the methods used in carrying out the calculations described here opens the door to rigorous
computational studies of other properties of electromagnetic waves scattered from two-dimensional randomly
rough surfaces. These include calculations of the ellipsometric parameters of metallic and dielectric surfaces,
transmission through dielectric surfaces, and all of the elements of the Mueller matrix for scattering from and
transmission through such surfaces. This work will be reported elsewhere.
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