Translator Disclaimer
12 October 2011 Parallel implementation of RX anomaly detection on multi-core processors: impact of data partitioning strategies
Author Affiliations +
Abstract
Anomaly detection is an important task for remotely sensed hyperspectral data exploitation. One of the most widely used and successful algorithms for anomaly detection in hyperspectral images is the Reed-Xiaoli (RX) algorithm. Despite its wide acceptance and high computational complexity when applied to real hyperspectral scenes, few documented parallel implementations of this algorithm exist, in particular for multi-core processors. The advantage of multi-core platforms over other specialized parallel architectures is that they are a low-power, inexpensive, widely available and well-known technology. A critical issue in the parallel implementation of RX is the sample covariance matrix calculation, which can be approached in global or local fashion. This aspect is crucial for the RX implementation since the consideration of a local or global strategy for the computation of the sample covariance matrix is expected to affect both the scalability of the parallel solution and the anomaly detection results. In this paper, we develop new parallel implementations of the RX in multi-core processors and specifically investigate the impact of different data partitioning strategies when parallelizing its computations. For this purpose, we consider both global and local data partitioning strategies in the spatial domain of the scene, and further analyze their scalability in different multi-core platforms. The numerical effectiveness of the considered solutions is evaluated using receiver operating characteristics (ROC) curves, analyzing their capacity to detect thermal hot spots (anomalies) in hyperspectral data collected by the NASA's Airborne Visible Infra- Red Imaging Spectrometer system over the World Trade Center in New York, five days after the terrorist attacks of September 11th, 2001.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jose M. Molero, Ester M. Garzón, Inmaculada García, and Antonio Plaza "Parallel implementation of RX anomaly detection on multi-core processors: impact of data partitioning strategies", Proc. SPIE 8183, High-Performance Computing in Remote Sensing, 81830I (12 October 2011); https://doi.org/10.1117/12.897388
PROCEEDINGS
9 PAGES


SHARE
Advertisement
Advertisement
Back to Top