Translator Disclaimer
23 February 2012 Double-illumination photoacoustic microscopy of intestinal hemodynamics following massive small bowel resection
Author Affiliations +
Massive small bowel resection (SBR) results in villus angiogenesis and intestinal adaptation. The exact mechanism that causes intestinal villus angiogenesis remains unknown. We hypothesize that hemodynamic changes within the remnant bowel after SBR will trigger intestinal angiogenesis. To validate this, we used photoacoustic microscopy (PAM) to image the microvascular system of the intestine in C57B6 mice and to measure blood flow and oxygen saturation (sO2) of a supplying artery and vein. Baseline measurements were made 6 cm proximal to the ileal-cecal junction (ICJ) prior to resection. A 50% proximal bowel resection was then performed, and measurements were again recorded at the same location immediately, 1, 3 and 7 days following resection. The results show that arterial and venous sO2 were similar prior to SBR. Immediately following SBR, the arterial and venous sO2 decreased by 14.3 ± 2.7% and 32.7 ± 6.6%, respectively, while the arterial and venous flow speed decreased by 62.9 ± 17.3% and 60.0 ± 20.1%, respectively. Such significant decreases in sO2 and blood flow indicate a hypoxic state after SBR. Within one week after SBR, both sO2 and blood flow speed had gradually recovered. By 7 days after SBR, arterial and venous sO2 had increased to 101.0 ± 2.9% and 82.7 ± 7.3% of the baseline values, respectively, while arterial and venous flow speed had increased to 106.0 ± 21.4% and 150.0 ± 29.6% of the baseline values, respectively. Such increases in sO2 and blood flow may result from angiogenesis following SBR.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Junjie Yao, Kathryn J. Rowland, Lidai Wang, Konstantin I. Maslov, Brad W. Warner, and Lihong V. Wang "Double-illumination photoacoustic microscopy of intestinal hemodynamics following massive small bowel resection", Proc. SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing 2012, 82233V (23 February 2012);

Back to Top