Paper
15 February 2012 Three-dimensional light bullets
S. Minardi, F. Eilenberger, Y. V. Kartashov, A. Szameit, U. Röpke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, L. Torner, F. Lederer, A. Tünnermann, T. Pertsch
Author Affiliations +
Abstract
Three dimensional Light Bullets (3D-LBs) are the most symmetric solitary waves, being nonlinear optical wavepackets propagating without diffraction nor dispersion. Since their theoretical prediction, 3D-LB's have constituted a challenge in nonlinear science, due to the impossibility to avoid catastrophic collapse in conventional homogeneous nonlinear media. We have recently observed stable 3D-LBs in media with periodically modulated transverse refractive index profile. We found that higher order linear and nonlinear effects force the 3D-LBs to evolve along their propagation path and eventually decay. The evolution and decay mechanism entails spatiotemporal effects, which under certain conditions, leads to superluminally propagating wavepackets.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
S. Minardi, F. Eilenberger, Y. V. Kartashov, A. Szameit, U. Röpke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, L. Torner, F. Lederer, A. Tünnermann, and T. Pertsch "Three-dimensional light bullets", Proc. SPIE 8240, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XI, 82400P (15 February 2012); https://doi.org/10.1117/12.912605
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Waveguides

Light wave propagation

Diffraction

Dispersion

Wave propagation

Complex systems

Silica

Back to Top