28 February 2012 Fundamentals of excitation and resonance of a near-field transducer in the presence of a conductive magnetic recording medium
Author Affiliations +
Abstract
Plasmonic Near-Field Transducers (NFTs) find use in Energy-Assisted Magnetic Recording (EAMR) schemes, where a high-anisotropy recording medium is locally heated to the Curie temperature, allowing conventional magnetic recording heads to overcome the high coercivity of the medium. However, coupling efficiency is low, and the conditions for excitation and resonance are poorly understood. In this work, we explore the behavior of a canonical EAMR setup including rectangular dielectric waveguide, elliptic cylinder gold NFT, and conductive planar recording medium. We systematically examine the effects of polarization and angle; spacing between NFT, waveguide, and recording medium; and variations in NFT size and incident wavelength.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jessica R. Piper, Paul C. Hansen, Lambertus Hesselink, "Fundamentals of excitation and resonance of a near-field transducer in the presence of a conductive magnetic recording medium", Proc. SPIE 8255, Physics and Simulation of Optoelectronic Devices XX, 82550P (28 February 2012); doi: 10.1117/12.909477; https://doi.org/10.1117/12.909477
PROCEEDINGS
8 PAGES


SHARE
Back to Top