17 February 2012 The general solution to HDR rendering
Author Affiliations +
Our High-Dynamic-Range (HDR) world is the result of nonuniform illumination. We like to believe that 21st century technology makes it possible to accurately reproduce any scene. On further study, we find that scene rendition remains a best compromise. Despite all the remarkable accomplishments in digital imaging, we cannot capture and reproduce the light in the world exactly. With still further study, we find that accurate reproduction is not necessary. We need an interdisciplinary study of image making - painting, photography and image processing - to find the general solution. HDR imaging would be very confusing, without two observations that resolve many paradoxes. First, optical veiling glare, that depends on the scene content, severely limits the range of light on cameras' sensors, and on retinas. Second, the neural spatial image processing in human vision counteracts glare with variable scene dependent responses. The counter actions of these optical and neural processes shape the goals of HDR imaging. Successful HDR increases the apparent contrast of details lost in the shadows and highlights of conventional images. They change the spatial relationships by altering the local contrast of edges and gradients. The goal of HDR imaging is displaying calculated appearance, rather than accurate light reproduction. By using this strategy we can develop universal algorithms that process all images, LDR and HDR, achromatic and color, by mimicking human vision. The study of the general solution for HDR imaging incorporates painting photography, vision research, color constancy and digital image processing.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
John McCann, John McCann, } "The general solution to HDR rendering", Proc. SPIE 8291, Human Vision and Electronic Imaging XVII, 829102 (17 February 2012); doi: 10.1117/12.914965; https://doi.org/10.1117/12.914965


YACCD2: yet another color constancy database updated
Proceedings of SPIE (February 04 2013)
Apparent contrast and surface color in complex scenes
Proceedings of SPIE (June 01 1991)
Peceptual rendering of HDR in painting and photography
Proceedings of SPIE (February 14 2008)
Attention-based color correction
Proceedings of SPIE (February 03 2006)

Back to Top