2 February 2012 Sharpness metric for no-reference image visual quality assessment
Author Affiliations +
Abstract
This paper presents a novel sharpness metric for color images. The proposed metric can be used for no-reference assessment of image visual quality. The metric basically relies on local power of wavelet transform high-frequency coefficients. It also takes into account possibility of presence of macrophotography and portrait photography effects in an image where the image part (usually central one) in sharp whilst the remained part (background) is smeared. Such effects usually increase subjective evaluation of image visual quality by humans. The effects are taken into consideration by joint analysis of wavelet coefficients with largest and smallest squared absolute values. Besides, we propose a simple mechanism for blocking artifact accounting (if an image is compressed by JPEG) and compensation of this factor contribution. Finally, the proposed sharpness metric is calculated in color space YCbCr as a weighted sum of sharpness components. Weight optimization has shown that a weight for intensity component Y is to be considerably smaller than weights for color components Cb and Cr. Optimization of weights for all stages of sharpness metric calculation is carried out for specialized database NRTID that contains 500 test images with previously determined MOS (Mean Opinion Score). Spearman rank order correlation coefficient (SROCC) determined for the designed sharpness metric and MOS is used as optimization criterion. After optimization, it reaches 0.71. This is larger than for other known available no-reference metrics considered at verification stage.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Nikolay N. Ponomarenko, Nikolay N. Ponomarenko, Vladimir V. Lukin, Vladimir V. Lukin, Oleg I. Eremeev, Oleg I. Eremeev, Karen O. Egiazarian, Karen O. Egiazarian, Jaakko T. Astola, Jaakko T. Astola, } "Sharpness metric for no-reference image visual quality assessment", Proc. SPIE 8295, Image Processing: Algorithms and Systems X; and Parallel Processing for Imaging Applications II, 829519 (2 February 2012); doi: 10.1117/12.906393; https://doi.org/10.1117/12.906393
PROCEEDINGS
11 PAGES


SHARE
RELATED CONTENT

Color image attribute and quality measurements
Proceedings of SPIE (May 28 2014)
Image quality: a tool for no-reference assessment methods
Proceedings of SPIE (January 24 2011)
A no reference image quality metric for blur and ringing...
Proceedings of SPIE (January 24 2012)
4D image processing in microscopy by combined methods
Proceedings of SPIE (May 02 2000)
Content selection based on compositional image quality
Proceedings of SPIE (January 29 2007)

Back to Top