You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 February 2012Investigation of ultra low-dose scans in the context of quantum-counting clinical CT
In clinical computed tomography (CT), images from patient examinations taken with conventional scanners
exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients
or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a
quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly
affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally
non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained
from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of
quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete
scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling
of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover,
in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based,
theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens
Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the
improvement from image noise reduction achievable with quantum counting techniques in CT examinations with
ultra-low X-ray dose and strong attenuation.
The alert did not successfully save. Please try again later.
T. Weidinger, T. M. Buzug, T. Flohr, G. S. K. Fung, S. Kappler, K. Stierstorfer, B. M. W. Tsui, "Investigation of ultra low-dose scans in the context of quantum-counting clinical CT," Proc. SPIE 8313, Medical Imaging 2012: Physics of Medical Imaging, 83134B (23 February 2012); https://doi.org/10.1117/12.911331