17 February 2012 Freehand SPECT reconstructions using look up tables
Author Affiliations +
Abstract
Nuclear imaging is a commonly used tool in today's diagnostics and therapy planning. For interventional use however it suffers from drawbacks which limit its application. Freehand SPECT was developed to overcome these limitations and to provide 3D functional imaging during an intervention. It combines a nuclear probe with an optical tracking system to obtain its position and orientation in space synchronized with its reading. This information can be used to compute a 3D tomographic reconstruction of an activity distribution. However, as there is no fixed geometry the system matrix has to be computed on-the-fly, using ad-hoc models of the detection process. One solution for such a model is a reference look up table of previously acquired measurements of a single source at different angles and distances. In this work two look up tables with a one and four millimeter step size between the entries were acquired. Twelve datasets of a phantom with two hollow spheres filled with a solution of Tc99wm were acquired with the Freehand SPECT system. Reconstructions with the look up tables and two analytical models currently in use were performed with these datasets and compared with each other. The finely sampled look up table achieved the qualitatively best reconstructions, while one of the analytical models showed the best positional accuracy.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alexander Hartl, Dzhoshkun I. Shakir, Risto Kojchev, Nassir Navab, Sibylle I. Ziegler, Tobias Lasser, "Freehand SPECT reconstructions using look up tables", Proc. SPIE 8316, Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling, 83162H (17 February 2012); doi: 10.1117/12.911599; https://doi.org/10.1117/12.911599
PROCEEDINGS
6 PAGES


SHARE
Back to Top