Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>Conference Committee</td>
<td>-variable</td>
</tr>
<tr>
<td>xi</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOAEROSOL DETECTION STRATEGIES</td>
<td></td>
</tr>
<tr>
<td>8358 04</td>
<td>Ambient background particulate composition, outdoor natural background: interferents/clutter [8358-03]</td>
<td>D. Paterno, U.S. Army Edgewood Chemical Biological Ctr. (United States)</td>
</tr>
<tr>
<td>8358 05</td>
<td>Proposal for a standoff bio-agent detection SWIR/MWIR differential scattering lidar [8358-04]</td>
<td>S. Lambert-Girard, Univ. Laval (Canada); N. Hô, B. Bourliaguet, P.-F. Paradis, Institut National d’Optique (Canada); M. Piché, Univ. Laval (Canada); F. Babin, Institut National d’Optique (Canada)</td>
</tr>
<tr>
<td>8358 06</td>
<td>Automated recognition and tracking of aerosol threat plumes with an IR camera pod [8358-05]</td>
<td>R. Fauth, C. Powell, T. Gruber, MESH, Inc. (United States); D. Clapp, Ipswich Engineering (United States)</td>
</tr>
<tr>
<td>8358 07</td>
<td>In silico design of smart binders to anthrax PA [8358-06]</td>
<td>M. Sellers, M. M. Hurley, U.S. Army Research Lab. (United States)</td>
</tr>
<tr>
<td></td>
<td>BIOSURVEILLANCE AND BIOSENSING</td>
<td></td>
</tr>
<tr>
<td>8358 09</td>
<td>Novel utilization of the outer membrane proteins for the identification and differentiation of pathogenic versus nonpathogenic microbial strains using mass spectrometry-based proteomics approach [8358-08]</td>
<td>R. E. Jabbour, M. Wade, U.S. Army Edgewood Chemical Biological Ctr. (United States); S. V. Deshpande, Science & Technology Corp. (United States); P. McCubbin, OptiMetrics, Inc. (United States); A. P. Snyder, V. Bevilacqua, U.S. Army Edgewood Chemical Biological Ctr. (United States)</td>
</tr>
<tr>
<td>8358 0B</td>
<td>Multi-wavelength resonance Raman spectroscopy of bacteria to study the effects of growth condition [8358-10]</td>
<td>N. Kunapareddy, Research Support Instruments, Inc. (United States); J. Grun, R. Lunsford, D. Gillis, U.S. Naval Research Lab. (United States); S. Nikitin, Research Support Instruments, Inc. (United States); Z. Wang, U.S. Naval Research Lab. (United States)</td>
</tr>
</tbody>
</table>
Biomolecule Raman spectral temporal flux from resting bacillus spores in deionized water matrix [8358-12]
A. Tripathi, Science Applications International Corp. (United States); R. E. Jabbour, J. A. Guicheteau, P. G. Wilcox, A. P. Snyder, U.S. Army Edgewood Chemical Biological Ctr. (United States)

Spectroscopic investigations of surface deposited biological warfare simulants [8358-13]
S. J. Barrington, H. Bird, D. Hurst, A. J. S. McIntosh, P. Spencer, S. H. Pelfrey, Defence Science and Technology Lab. (United Kingdom); M. J. Baker, Defence Science and Technology Lab. (United Kingdom) and Univ. of Central Lancashire (United Kingdom)

Detection of Bacillus spores within 15 minutes by surface-enhanced Raman spectroscopy [8358-15]
C. Shende, F. Inscore, H. Huang, S. Farquharson, A. Sengupta, Real-Time Analyzers, Inc. (United States)

Empirical methods for identifying specific peptide-protein interactions for smart reagent development [8358-16]
J. M. Kogot, D. A. Sarkes, D. N. Stratis-Cullum, P. M. Pellegrino, U.S. Army Research Lab. (United States)

The use of a handheld Raman system for virus detection [8358-17]
C. Song, The Univ. of Georgia (United States) and Southeast Univ. (China); J. D. Driskell, R. A. Tripp, The Univ. of Georgia (United States); Y. Cui, Southeast Univ. (China); Y. Zhao, The Univ. of Georgia (United States)

Testing and comparison of the coating materials for immunosensors on QCM [8358-18]
A. Oztuna, Gulhane Military Medical Academy (Turkey); H. Nazir, Ankara Univ. (Turkey)

High-resolution optical signatures of fresh and aged explosives in the 420nm to 620nm illumination range [8358-21]
R. Lunsford, J. Grun, U.S. Naval Research Lab. (United States); J. Gump, U.S. Naval Surface Warfare Ctr. (United States)

Use of a spectroscopic lidar for standoff explosives detection through Raman spectra [8358-22]

Recent improvements and testing of a check point explosives detection system [8358-23]
Standoff detection results with the infrared hyperspectral MoDDIFS sensor [8358-24]
G. Fortin, AEREX Avionics, Inc. (Canada); J.-M. Thériault, Defence Research and Development Canada, Valcartier (Canada); P. Lacasse, AEREX Avionics, Inc. (Canada); F. Bouffard, H. Lavoie, E. Puckrin, S. Desilets, Defence Research and Development Canada, Valcartier (Canada); Y. Montembeault, V. Farley, Telops, Inc. (Canada)

Possibilities for standoff Raman detection applications for explosives [8358-25]

Coded-aperture Raman imaging for standoff explosive detection [8358-26]
S. T. McCain, B. D. Guenther, Applied Quantum Technologies, Inc. (United States); D. J. Brady, K. Krishnamurthy, R. Willett, Duke Univ. (United States)

Coherent anti-stokes Raman spectroscopy for detecting explosives in real time [8358-27]
A. Dogariu, Princeton Univ. (United States); A. Pidwerbetsky, LGS Innovations Inc. (United States)

Explosives detection and identification using surface plasmon-coupled emission [8358-28]
S. Ja, FLIR Systems (United States)

Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces [8358-20]
M. C. Phillips, J. D. Suter, B. E. Bernacki, T. J. Johnson, Pacific Northwest National Lab. (United States)

POINT DETECTION OF EXPLOSIVES

Photo-assisted electrochemical detection (PAED) following HPLC-UV for the determination of nitro explosives and degradation products [8358-30]
J. Fedorowski, W. R. LaCourse, Univ. of Maryland, Baltimore County (United States); M. M. Lorah, U.S. Geological Survey (United States)

Investigating a drop-on-demand microdispenser for standardized sample preparation [8358-31]
E. L. Holthoff, M. E. Farrell, P. M. Pellegrino, U.S. Army Research Lab. (United States)

Multidimensional detection of explosives and explosive signatures via laser electrospray mass spectrometry [8358-33]
J. J. Brady, U.S. Army Research Lab. (United States); P. M. Flanigan IV, J. J. Perez, Temple Univ. (United States); E. J. Judge, Los Alamos National Lab. (United States); R. J. Levis, Temple Univ. (United States)

Portable thin layer chromatography for field detection of explosives and propellants [8358-35]

Portable standoff Raman system for fast detection of homemade explosives through glass, plastic, and water [8358-37]
LASER-BASED APPROACHES TO CHEMICAL DETECTION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8358 12</td>
<td>Reduced LIBS plasma model via thermodynamics [8358-38]</td>
<td>S. T. Griffin, B. Dent, The Univ. of Memphis (United States)</td>
</tr>
<tr>
<td>8358 15</td>
<td>Plasmonic paper as a highly efficient SERS substrate [8358-41]</td>
<td>C. H. Lee, Washington Univ. in St. Louis (United States); M. E. Hankus, U.S. Army Research Lab. (United States); L. Tian, Washington Univ. in St. Louis (United States); P. M. Pellegrino, U.S. Army Research Lab. (United States); S. Singamaneni, Washington Univ. in St. Louis (United States)</td>
</tr>
<tr>
<td>8358 18</td>
<td>Nondestructive detection and imaging of trace chemicals with high-chemical specificity using single-beam coherent anti-stokes Raman scattering in a standoff configuration [8358-44]</td>
<td>M. T. Bremer, V. V. Lozovoy, M. Dantus, Michigan State Univ. (United States)</td>
</tr>
<tr>
<td>8358 1A</td>
<td>Improved sensing using simultaneous deep UV Raman and fluorescence detection [8358-46]</td>
<td>R. Bhartia, Jet Propulsion Lab. (United States); W. F. Hug, R. D. Reid, Photon Systems, Inc. (United States)</td>
</tr>
</tbody>
</table>

NOVEL DETECTION STRATEGIES FOR CHEMICAL DETECTION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8358 1D</td>
<td>Detection of trace gases using frequency modulated off-axis cavity ring-down spectroscopy [8358-49]</td>
<td>A. Karpf, G. N. Rao, Adelphi Univ. (United States)</td>
</tr>
<tr>
<td>8358 1E</td>
<td>Lightweight autonomous chemical identification system (LACIS) [8358-50]</td>
<td>G. Lozas, Smiths Detection (United States); H. Lin, T. Burch, Intelligent Optical Systems, Inc. (United States)</td>
</tr>
<tr>
<td>8358 1G</td>
<td>A microfluidic toolbox approach to CBRNE sensing [8358-52]</td>
<td>C. Gärtner, R. Klemm, N. Hlawatsch, H. Becker, microfluidic ChipShop GmbH (Germany)</td>
</tr>
</tbody>
</table>
Photoacoustic spectroscopy for chemical detection [8358-54]
E. L. Holthoff, P. M. Pellegrino, U.S. Army Research Lab. (United States)

Real-time quantitative hydrocarbon gas imaging with the gas cloud imager (GCI) [8358-55]
N. Hagen, R. T. Kester, C. Walker, Rebellion Photonics, Inc. (United States)

Photoacoustic spectroscopy (PAS) system for remote detection of explosives, chemicals, and special nuclear materials [8358-57]

Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves [8358-58]
G. S. Nusinovich, Univ. of Maryland, College Park (United States); P. Sprangle, U.S. Naval Research Lab. (United States); C. A. Romero-Talamas, J. Rodgers, R. Pu, D. G. Kashyn, T. M. Antonsen, Jr., V. L. Granatstein, Univ. of Maryland, College Park (United States)

Characterization of CdZnTe crystals and radiation detectors [8358-59]
J. Butcher, M. Hamade, M. Petryk, A. E. Bolotnikov, G. S. Camarda, Y. Cui, R. Gul, A. Hossain, K. H. Kim, G. Yang, R. B. James, Brookhaven National Lab. (United States)

Gamma discrimination in pillar structured thermal neutron detectors [8358-60]
Q. Shao, R. P. Radev, A. M. Conway, L. F. Voss, T. F. Wang, R. J. Nikolić, Lawrence Livermore National Lab. (United States); N. Deo, C. L. Cheung, Univ. of Nebraska-Lincoln (United States)

Coherent x-ray scatter projection imaging using an array of monoenergetic pencil beams [8358-62]
K. Landheer, Carleton Univ. (Canada); P. C. Johns, Carleton Univ. (Canada) and Univ. of Ottawa (Canada)

MOX assay using He-4 scintillation detectors [8358-63]
D. Murer, Arktis Radiation Detectors Ltd. (Switzerland) and ETH Zurich (Switzerland); R. Chandra, Arktis Radiation Detectors Ltd. (Switzerland); G. Davatz, H. Friederich, Arktis Radiation Detectors Ltd. (Switzerland) and ETH Zurich (Switzerland); U. Gendotti, Arktis Radiation Detectors Ltd. (Switzerland); R. Jebali, Arktis Radiation Detectors Ltd. (Switzerland) and ETH Zurich (Switzerland)

Investigations into the polymorphs and hydration products of UO3 [8358-65]

Thermal neutron detection with PMMA nanocomposites containing dysprosium fluoride nanocrystals [8358-66]
The use of stimulated electron emission (SEE) in homeland security applications [8358-67]

I-SCAD® standoff chemical agent detector overview [8358-70]
M. O. Popa, M. T. Griffin, Chemring Detection Systems, Inc. (United States)

Micro-optics for simultaneous multi-spectral imaging applied to chemical/biological and IED detection [8358-73]
M. Hinnrichs, Pacific Advanced Technology, Inc. (United States)

Influence of spatial differential reflection parameters on 2,4,6-trinitrotoluene (TNT) absorption spectra [8358-74]
T. Dubroca, G. Guetard, R. E. Hummel, Univ. of Florida (United States)

Isolation and characterization of anti-SEB peptides using magnetic sorting and bacterial peptide display library technology [8358-75]
J. M. Pennington, J. M. Kogot, D. A. Sarkes, P. M. Pellegrino, D. N. Stratis-Cullum, U.S. Army Research Lab. (United States)
Conference Committee

Symposium Chair

Kevin P. Meiners, Office of the Secretary of Defense (United States)

Symposium Cochair

Kenneth R. Israel, Lockheed Martin Corporation (United States)

Conference Chair

Augustus Way Fountain III, U.S. Army Edgewood Chemical Biological Center (United States)

Program Committee

Jerome J. Braun, MIT Lincoln Laboratory (United States)
John C. Carrano, Carrano Consulting (United States)
Christopher C. Carter, The Johns Hopkins University Applied Physics Laboratory (United States)
Matthew T. Griffin, General Dynamics Armament and Technical Products (United States)
Jason Guicheteau, U.S. Army Edgewood Chemical Biological Center (United States)
Eric J. Houser, U.S. Department of Homeland Security (United States)
Harry Ing, Bubble Technology Industries, Inc. (Canada)
Harold R. McHugh, U.S. Department of Energy (United States)
Carter D. Hull, Y-12 National Security Complex (United States)
Aaron LaPointe, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Paul M. Pellegrino, U.S. Army Research Laboratory (United States)
Michael W. Petryk, Defence Research and Development Canada, Suffield (Canada)
James G. Placke, Jr., Y-12 National Security Complex (United States)
Cynthia R. Swim, U.S. Army Edgewood Chemical Biological Center (United States)
David Taylor, U.S. Department of Homeland Security (United States)
Anna Tedeschi, Strategic Analysis, Inc. (United States) and U.S. Department of Homeland Security (United States)
Steven W. Waugh, Defense Threat Reduction Agency (United States)
Session Chairs

Bioaerosol Detection Strategies
Jerome J. Braun, MIT Lincoln Laboratory (United States)

Biosurveillance and Biosensing
Cynthia R. Swim, U.S. Army Edgewood Chemical Biological Center (United States)

Novel Devices for Biodetection I
Steven W. Waugh, Defense Threat Reduction Agency (United States)

Novel Devices for Biodetection II
Steven W. Waugh, Defense Threat Reduction Agency (United States)

Proximal and Standoff Detection of Explosives
Aaron LaPointe, U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Point Detection of Explosives
Anna Tedeschi, Strategic Analysis, Inc. (United States)

Laser-Based Approaches to Chemical Detection
Paul M. Pellegrino, U.S. Army Research Laboratory (United States)

Novel Detection Strategies for Chemical Detection
Jason A. Guicheteau, U.S. Army Edgewood Chemical Biological Center (United States)

Radiological and Nuclear Detection
James G. Placke, Jr., Y-12 National Security Complex (United States)

Nanotechnology for Standoff Detection and Counterterrorism Operations I: Joint Session with Conference 8373
Michael K. Rafailov, The Reger Group (United States)
Thomas G. Thundat, University of Alberta (Canada)

Nanotechnology for Standoff Detection and Counterterrorism Operations II: Joint Session with Conference 8373
Michael K. Rafailov, The Reger Group (United States)
Thomas G. Thundat, University of Alberta (Canada)
Introduction

The thirteenth meeting of the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing conference was far from "unlucky". SPIE's decision to move the Defense Security + Sensing Symposium from Orlando to Baltimore was very good for this conference. The CBRNE Sensing conference had more submitted papers this year than any previous meeting. Likewise the quality of the papers remained quite high. All in all, I am quite pleased with the conference this year.

While the titles of the individual sessions this year appear similar to last year's meeting, the contributed papers reflect shifts in funded research over the past few years. The keynote address was given by Dr. Franca Jones from the Office of Science and Technology Policy (OSTP), Executive Office of the President, on Biosurveillance. While the first day of the conference focused on bio-detection, many of the papers highlighted recent policy and funding shifts away from developing stand-off biological detection using LIDAR to more disease monitoring and point-of-care diagnosis. Explosives detection remains a popular forum where groups across the inter-agency and academia are reporting on some exciting advances in point and stand-off detection of traditional and homemade (HME) explosives. The number of traditional chemical sensing papers was actually down this year, reflecting a downturn in defense funding in chemical warfare agent sensor development. The radiological and nuclear sensing session continues to grow in technical strength and attendee popularity. We also held a joint session with the Micro and Nanotechnology Sensors, Systems, and Applications IV conference on the development of nanosensors for counter-terrorism operations.

There continues to be interest in reliable methodologies and technologies for point- and stand-off detection of chemical, biological, radiological, special nuclear, and explosive (CBRNE) materials. This conference remains an important forum where diverse organizations and interests can share their labors to develop chemical and biological detection capabilities for the defense, medical, law enforcement, explosive ordinance disposal (EOD), environmental protection, industrial and critical infrastructure protection, and food processing communities.

As always, a tremendous ‘thank you’ to my program committee. I would not be able to organize and run this conference without their help.

Augustus Way Fountain III, Ph.D.