14 May 2012 3D shape measurement using deterministic phase retrieval and a partially developed speckle field
Author Affiliations +
Abstract
For deterministic phase retrieval, the problem of insignificant axial intensity variations upon defocus of a smooth object wavefront is addressed. Our proposed solution is based on the use of a phase diffuser facilitating the formation of a partially-developed speckle field (i.e., a field with both scattered-wave and unperturbed-wave components). The smooth test wavefront impinges first on the phase diffuser producing the speckle field. Then two speckle patterns with different defocus are recorded at the output plane of a 4f-optical filtering setup with a spatial light modulator (SLM) in the common Fourier domain. The local variations of the recorded speckle patterns and the defocus distance approximate the axial intensity derivative which, in turn, is required to recover the wavefront phase via the transport of intensity equation (TIE). The SLM setup reduces the speckle recording time and the TIE allows direct (i.e., non-iterative) calculation of the phase. The pre-requisite partially-developed speckle field in our technique facilitates high image contrast and significant axial intensity variation. Wavefront reconstruction for the 3D refractive test object used demonstrates the effectiveness of the technique.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Percival F. Almoro, Percival F. Almoro, Laura Waller, Laura Waller, Mostafa Agour, Mostafa Agour, Claas Falldorf, Claas Falldorf, Giancarlo Pedrini, Giancarlo Pedrini, Wolfgang Osten, Wolfgang Osten, Steen G. Hanson, Steen G. Hanson, "3D shape measurement using deterministic phase retrieval and a partially developed speckle field", Proc. SPIE 8384, Three-Dimensional Imaging, Visualization, and Display 2012, 83840Q (14 May 2012); doi: 10.1117/12.919223; https://doi.org/10.1117/12.919223
PROCEEDINGS
6 PAGES


SHARE
Back to Top