You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 June 2012Tales of scales: how to enable backup process tool qualification for high-end photomasks
Strict reticle critical dimension (CD) control is needed to supply ≤ 20nm wafer technology nodes. In front end
lithographic processes for example, precise temperature control in resist baking steps is considered paramount to limiting
reticle CD error sources. Additionally, current density during writing and focus are continuously tracked in 50kV e-beam
pattern generators (PG) in order to provide stable CD performance. Despite these strict controls (and many others),
feedback compensation strategies are increasingly utilized in mask manufacturing to reach < 2nm 3σ CD uniformity
(CDU). Such compensations require stable reticle CD signatures which can be problematic when alternate or backup
process tools are employed. The AMTC has applied principle component analysis (PCA) to resist CD measurements of
50kV test reticles fabricated with chemically amplified resists (CAR) in order to quantify the resist CDU capabilities of
front and backup lithographic process tools. PCA results elucidate significant resist CDU differences between similar
lithographic process tools that are considered well matched via CDU 3σ comparisons.
The utility of PCA relies on the statistical analysis of large data sets however, reticle CD sampling is typically sparse, on
the 10-2 m or centimeter (cm) scale using conventional scanning electron microscopes (CD SEM). Higher CD spatial
resolutions can be achieved using advanced inspection tools, which provide CD data on a substantially smaller length
scale (10-4 m), thus yielding a considerably larger CD snapshot for front/backup process tool comparisons. Combining
PCA analysis with high spatial resolution CD data provides novel insights into the opportunities for tool and process CD
capabilities.
The alert did not successfully save. Please try again later.
G. R. Cantrell, Christian Bürgel, Martin Sczyrba, Jan Heumann, Stefan Meusemann, Clemens Utzny, "Tales of scales: how to enable backup process tool qualification for high-end photomasks," Proc. SPIE 8441, Photomask and Next-Generation Lithography Mask Technology XIX, 844103 (29 June 2012); https://doi.org/10.1117/12.964671