Paper
13 September 2012 Turbulence modeling and estimation for AO systems
Author Affiliations +
Abstract
Nowadays, the adaptive optics (AO) system is of fundamental importance to reduce the effect of atmospheric turbulence on the images formed on large ground telescopes. In this paper the AO system takes advantage of the knowledge of the current turbulence characteristics, that are estimated by data, to properly control the deformable mirrors. The turbulence model considered in this paper is based on two assumptions: considering the turbulence as formed by a discrete set of layers moving over the telescope lens, and each layer is modeled as a Markov-Random-Field. The proposed Markov-Random-Field approach is exploited for estimating the layers' characteristics. Then, a linear predictor of the turbulent phase, based on the computed information on the turbulence layers, is constructed. Since scalability and low computational complexity of the control algorithms are important requirements for real AO systems, the computational complexity properties of the proposed model are investigated. Interestingly, the proposed model shows a good scalability and an almost linear computational complexity thanks to its block diagonal structure. Performances of the proposed method are investigated by means of some simulations.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alessandro Beghi, Angelo Cenedese, and Andrea Masiero "Turbulence modeling and estimation for AO systems", Proc. SPIE 8447, Adaptive Optics Systems III, 844718 (13 September 2012); https://doi.org/10.1117/12.926019
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Turbulence

Adaptive optics

Telescopes

Systems modeling

Sensors

Atmospheric turbulence

Magnetorheological finishing

RELATED CONTENT


Back to Top