You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 March 2013Raman microspectrometer combined with scattering microscopy and lensless imaging for bacteria identification
In this paper, we report on a compact prototype capable both of lensfree imaging, Raman spectrometry and scattering
microscopy from bacteria samples. This instrument allows high-throughput real-time characterization without the need
of markers, making it potentially suitable to field label-free biomedical and environmental applications.
Samples are illuminated from above with a focused-collimated 532nm laser beam and can be x-y-z scanned. The bacteria
detection is based on emerging lensfree imaging technology able to localize cells of interest over a large field-of-view of
24mm2.
Raman signal and scattered light are then collected by separate measurement arms simultaneously. In the first arm the
emission light is fed by a fiber into a prototype spectrometer, developed by Tornado Spectral System based on Tornado’s
High Throughput Virtual Slit (HTVS) novel technology. The enhanced light throughput in the spectral region of interest
(500-1800 cm-1) reduces Raman acquisition time down to few seconds, thus facilitating experimental protocols and
avoiding the bacteria deterioration induced by laser thermal heating. Scattered light impinging in the second arm is
collected onto a charge-coupled-device. The reconstructed image allows studying the single bacteria diffraction pattern
and their specific structural features.
The characterization and identification of different bacteria have been performed to validate and optimize the acquisition
system and the component setup.
The results obtained demonstrate the benefits of these three techniques combination by providing the precise bacteria
localization, their chemical composition and a morphology description. The procedure for a rapid identification of
particular pathogen bacteria in a sample is illustrated.
The alert did not successfully save. Please try again later.
S. A. Strola, E. Schultz, C. P. Allier, B. DesRoches, J. Lemmonier, J.-M. Dinten, "Raman microspectrometer combined with scattering microscopy and lensless imaging for bacteria identification," Proc. SPIE 8572, Advanced Biomedical and Clinical Diagnostic Systems XI, 85720X (22 March 2013); https://doi.org/10.1117/12.2002301