You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 February 2013Polarised Raman imaging of living cells for chemical contrast manipulation
Raman spectral imaging has become a more and more popular technique in biological studies because it can extract
chemical information from living cells in a label-free manner. One of the most challenging issues in the label-free
Raman imaging of biological samples is to increase the molecular specificity in the spectra for better chemical contrast.
Usually, the Raman spectrum from a cell is dominated by a few strong Raman bands such as the amide I band around
1650 cm-1, CH2 bend around 1445 cm-1 or the amide III band around 1300 cm-1 and it is not easy to get chemical contrast from other Raman bands that overlap with them. In this study, we aim to manipulate the chemical contrast in a living cell by exploiting the polarisation effects in Raman spectroscopy. By simply putting an analyser before the spectrometer, we can take the Raman image at the parallel and perpendicular polarisation against the incident light at the sample. The Raman spectra at the two orthogonal polarisations represent the Raman signals with different molecular orientation and symmetry of vibrations. Our experimental results demonstrate that at certain Raman shifts the two orthogonal polarisations indeed present different chemical contrasts. This indicates that polarized Raman imaging can help us visualise the different chemical contrasts that overlap at the same Raman shift and therefore increase the amount of chemical information we can get from cells.
The alert did not successfully save. Please try again later.
Liang-da Chiu, Almar F. Palonpon, Keisaku Hamada, Satoshi Kawata, Mikiko Sodeoka, Katsumasa Fujita, "Polarised Raman imaging of living cells for chemical contrast manipulation," Proc. SPIE 8587, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XI, 858720 (22 February 2013); https://doi.org/10.1117/12.2002826