22 March 2013 Investigation of temperature influence on output performances of high-power cladding-pumped Er,Yb co-doped fiber laser
Author Affiliations +
Abstract
Effect of the fiber’s temperature on lasing performance is investigated in high-power, cladding-pumped Er, Yb co-doped fiber laser system. A three-layer symmetric cylindrical model is applied to describe the temperature distribution of the fiber under natural air convection. Radial temperature distribution of the fiber is calculated with consideration of the quantum defect heat, the heat from the absorption of spontaneous emission, and the convection and radiation at the heat transfer boundaries. The steady-state theoretical model based on rate equations takes into account of the energy transfers between Er3+-ions and Yb3+-ions and a fraction of nonparticipatory Yb3+-ions. Shooting method and Newton iteration method are used to solve the boundary-value problems under different environmental temperatures, pump powers and reflectivities at the fiber ends. Numerical simulations are consistent with experimental results and show that increasing the fiber’s temperature is an effective strategy to suppress the 1 μm parasitic lasing and improve the lasing performance at 1.5 μm, a similar phenomenon is found with enhancing doping concentrations of the two ions and decreasing the reflectivities at the fiber ends. Our numerical results present a theoretical guideline for further improving the laser performance in terms of output power of ~1.5 μm in high-power Er,Yb-doped fiber laser systems.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Wenting Chen, Jianjian Sha, Yong Wang, Deyuan Shen, "Investigation of temperature influence on output performances of high-power cladding-pumped Er,Yb co-doped fiber laser", Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86012A (22 March 2013); doi: 10.1117/12.2002720; https://doi.org/10.1117/12.2002720
PROCEEDINGS
11 PAGES


SHARE
RELATED CONTENT


Back to Top