4 February 2013 Natural image understanding using algorithm selection and high-level feedback
Author Affiliations +
Natural Image processing and understanding encompasses hundreds or even thousands of different algorithms. Each algorithm has a certain peak performance for a particular set of input features and configurations of the objects/regions of the input image (environment). To obtain the best possible result of processing, we propose an algorithm selection approach that permits to always use the most appropriate algorithm for the given input image. This is obtained by at first selecting an algorithm based on low level features such as color intensity, histograms, spectral coefficients. The resulting high level image description is then analyzed for logical inconsistencies (contradictions) that are then used to refine the selection of the processing elements. The feedback created from the contradiction information is executed by a Bayesian Network that integrates both the features and a higher level information selection processes. The selection stops when the high level inconsistencies are all resolved or no more different algorithms can be selected.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Martin Lukac, Martin Lukac, Michitaka Kameyama, Michitaka Kameyama, Kosuke Hiura, Kosuke Hiura, } "Natural image understanding using algorithm selection and high-level feedback", Proc. SPIE 8662, Intelligent Robots and Computer Vision XXX: Algorithms and Techniques, 86620D (4 February 2013); doi: 10.1117/12.2008593; https://doi.org/10.1117/12.2008593

Back to Top