You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 April 2013Fast 3D thick mask model for full-chip EUVL simulations
Extreme ultraviolet lithography (EUVL) uses a 13.5nm exposure wavelength, all-reflective projection optics, and a reflective mask under an oblique illumination with a chief ray angle of about 6 degrees to print device patterns. This imaging configuration leads to many challenges related to 3D mask topography. In order to accurately predict and correct these problems, it is important to use a 3D mask model in full-chip EUVL applications such as optical proximity correction (OPC) and verifications. In this work, a fast approximate 3D mask model developed previously for full-chip deep ultraviolet (DUV) applications is extended and greatly enhanced for EUV applications and its accuracy is evaluated against a rigorous 3D mask model.
The alert did not successfully save. Please try again later.
Peng Liu, Xiaobo Xie, Wei Liu, Keith Gronlund, "Fast 3D thick mask model for full-chip EUVL simulations," Proc. SPIE 8679, Extreme Ultraviolet (EUV) Lithography IV, 86790W (1 April 2013); https://doi.org/10.1117/12.2010818