You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 April 2013PS-b-PHOST as a high χ block copolymers for directed self assembly: optimization of underlayer and solvent anneal processes
Directed self-assembly (DSA) of block copolymers (BCP) could enable high resolution patterning beyond the
capabilities of current optical lithography methods via pitch multiplication from lower resolution primary lithographic
patterns. For example, DSA could enable dense feature production with pitches less than 80 nm from patterns generated
using 193 nm exposure tools without the need for double patterning or other schemes. According to theory, microphase
separation of diblock copolymers occurs when the critical condition that χN>10.5 is met while the pitch of the resulting
polymer features scale as ~N2/3, where χ is the Flory Huggins interaction parameter and N is the total degree of
polymerization for the diblock copolymer. In order to generate patterns with smaller pitches, N must be decreased while
maintaining a χN>10.5 to allow for phase separation. This requires utilization of polymers with higher χ values as N is decreased. Current materials, such as PS-b-PMMA, exhibit a relatively low χ value of ~0.04, which limits the practical pitch of DSA line-space patterns produced using PS-b-PMMA to approximately 20 nm. In this paper, we investigate alternative materials, namely poly(styrene)-b-poly(hydroxystyrene) (PS-b-PHOST), which exhibits a high χ value via hydrogen bonding interactions that can allow for production of sub-20nm pitch DSA patterns. In order to utilize any diblock copolymer for DSA, a neutral underlayer and a method for annealing the block copolymer are required. Here, a random copolymer, poly(styrene-co-hydroxystyrene-co-glycidyl methacrylate), is developed and reported for use as a neutral underlayer for PS-b-PHOST. Furthermore, a solvent annealing method for PS-b-PHOST is developed and
optimized using ethyl acetate to allow for uniform microphase separation of PS-b-PHOST.
The alert did not successfully save. Please try again later.
Nathan D. Jarnagin, Wei-Ming Yeh, Jing Cheng, Andrew Peters, Richard A. Lawson, Laren M. Tolbert, Clifford L. Henderson, "PS-b-PHOST as a high X block copolymers for directed self assembly: optimization of underlayer and solvent anneal processes," Proc. SPIE 8680, Alternative Lithographic Technologies V, 86801X (5 April 2013); https://doi.org/10.1117/12.2021420