Proceedings Volume 8710 is from: Logo
SPIE DEFENSE, SECURITY, AND SENSING
29 April - 3 May 2013
Baltimore, Maryland, United States
Front Matter: Volume 8710
Proc. SPIE 8710, Front Matter: Volume 8710, 871001 (10 June 2013); https://doi.org/10.1117/12.2031928
Advances in Spectroscopic Chemical Detection I
Proc. SPIE 8710, Mid-wave infrared hyperspectral imaging of unknown chemical warfare agents, 871002 (29 May 2013); https://doi.org/10.1117/12.2017868
Proc. SPIE 8710, Standoff chemical D&Id with extended LWIR hyperspectral imaging spectroradiometer, 871003 (29 May 2013); https://doi.org/10.1117/12.2017373
Proc. SPIE 8710, Stand-off identification and mapping of liquid surface contaminations by passive hyperspectral imaging, 871004 (29 May 2013); https://doi.org/10.1117/12.1518449
Advances in Spectroscopic Chemical Detection II
Proc. SPIE 8710, Video-rate spectral imaging of gas leaks in the longwave infrared, 871005 (29 May 2013); https://doi.org/10.1117/12.2015520
Proc. SPIE 8710, Improved detection and false alarm rejection for chemical vapors using passive hyperspectral imaging, 871006 (29 May 2013); https://doi.org/10.1117/12.2015322
Proc. SPIE 8710, Standoff chemical detection with parts per million level calibrated detection sensitivity, 871007 (29 May 2013); https://doi.org/10.1117/12.2016282
Proc. SPIE 8710, CWA stand-off detection, a new figure-of-merit: the field surface scanning rate, 871008 (29 May 2013); https://doi.org/10.1117/12.2018305
Advances in Spectroscopic Chemical Detection III
Proc. SPIE 8710, Performance comparison of microphone and reflector array structures for real-time and outdoor photoacoustic chemical sensing, 871009 (29 May 2013); https://doi.org/10.1117/12.2016293
Proc. SPIE 8710, LIBS plasma model validation, 87100A (29 May 2013); https://doi.org/10.1117/12.2016208
Proc. SPIE 8710, Methodology for the passive detection and discrimination of chemical and biological aerosols, 87100B (29 May 2013); https://doi.org/10.1117/12.2015324
Advances in Chemical Point Detection
Proc. SPIE 8710, Smart phones: platform enabling modular, chemical, biological, and explosives sensing, 87100D (29 May 2013); https://doi.org/10.1117/12.2014759
Proc. SPIE 8710, Paper SERS chromatography for detection of trace analytes in complex samples, 87100E (29 May 2013); https://doi.org/10.1117/12.2015553
Proc. SPIE 8710, Development of surface enhanced Raman scattering (SERS) spectroscopy monitoring of fuel markers to prevent fraud, 87100G (29 May 2013); https://doi.org/10.1117/12.2018389
Proc. SPIE 8710, Ppb detection of Sarin surrogate in liquid solutions, 87100H (29 May 2013); https://doi.org/10.1117/12.2011332
Advances in Standoff Explosives Detection I
Proc. SPIE 8710, Infrared hyperspectral standoff detection of explosives, 87100I (29 May 2013); https://doi.org/10.1117/12.2015682
Proc. SPIE 8710, Quantum cascade laser FM spectroscopy of explosives, 87100J (29 May 2013); https://doi.org/10.1117/12.2015483
Proc. SPIE 8710, Hazardous material analysis using mid-wave infrared hyperspectral imaging techniques, 87100L (29 May 2013); https://doi.org/10.1117/12.2017865
Proc. SPIE 8710, THz-Raman spectroscopy for explosives, chemical, and biological detection, 87100M (29 May 2013); https://doi.org/10.1117/12.2018095
Proc. SPIE 8710, Quantum cascade laser intracavity absorption sensor, 87100N (29 May 2013); https://doi.org/10.1117/12.2018193
Advances in Standoff Explosives Detection II
Proc. SPIE 8710, SWIR hyperspectral imaging detector for surface residues, 87100O (29 May 2013); https://doi.org/10.1117/12.2016084
Proc. SPIE 8710, Investigation of short cavity CRDS noise terms by optical correlation, 87100P (29 May 2013); https://doi.org/10.1117/12.2016212
Proc. SPIE 8710, Next generation hazard detection via ultrafast coherent anti-Stokes Raman spectroscopy, 87100Q (29 May 2013); https://doi.org/10.1117/12.2015838
Proc. SPIE 8710, Rejection of fluorescence from Raman spectra of explosives by picosecond optical Kerr gating, 87100R (29 May 2013); https://doi.org/10.1117/12.2017863
Proc. SPIE 8710, Spatiotemporal evolution of plasma molecular emission following laser ablation of explosive analogs, 87100S (29 May 2013); https://doi.org/10.1117/12.2016440
Applications of Explosives Detection I
Proc. SPIE 8710, Real-world particulate explosives test coupons for optical detection applications, 87100T (29 May 2013); https://doi.org/10.1117/12.2015097
Proc. SPIE 8710, Infrared (1-12 um) atomic and molecular emission signatures from energetic materials using laser induced breakdown spectroscopy, 87100V (29 May 2013); https://doi.org/10.1117/12.2017913
Applications of Explosives Detection II
Proc. SPIE 8710, Feasibility studies on explosive detection and homeland security applications using a neutron and x-ray combined computed tomography system, 87100W (29 May 2013); https://doi.org/10.1117/12.2017988
Proc. SPIE 8710, A review of sensor data fusion for explosives and weapons detection, 87100X (29 May 2013); https://doi.org/10.1117/12.2015530
Proc. SPIE 8710, A simulation study of detection of weapon of mass destruction based on radar , 87100Y (29 May 2013); https://doi.org/10.1117/12.2015891
Proc. SPIE 8710, Dual-excitation wavelength resonance Raman explosives detector, 87100Z (29 May 2013); https://doi.org/10.1117/12.2015945
Proc. SPIE 8710, Explosives detection using quantum cascade laser spectroscopy, 871010 (29 May 2013); https://doi.org/10.1117/12.2016037
Proc. SPIE 8710, Explosive vapor detection payload for small robots, 871011 (29 May 2013); https://doi.org/10.1117/12.2016098
Proc. SPIE 8710, Investigation of molecular and elemental species dynamics in NTO, TNT, and ANTA using femtosecond LIBS technique, 871012 (29 May 2013); https://doi.org/10.1117/12.2015685
Advances in Biological Detection I
Proc. SPIE 8710, Models to support active sensing of biological aerosol clouds, 871013 (29 May 2013); https://doi.org/10.1117/12.2016324
Proc. SPIE 8710, Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling, 871017 (29 May 2013); https://doi.org/10.1117/12.2016151
Proc. SPIE 8710, Wavelength resolved polarized elastic scatter measurements from micron-sized single particles, 871018 (29 May 2013); https://doi.org/10.1117/12.2016398
Advances in Biological Detection II
Proc. SPIE 8710, Microorganisms detection on substrates using QCL spectroscopy, 871019 (29 May 2013); https://doi.org/10.1117/12.2016099
Proc. SPIE 8710, Metaproteomics analyses as diagnostic tool for differentiation of Escherichia coli strains in outbreaks, 87101A (29 May 2013); https://doi.org/10.1117/12.2016494
Proc. SPIE 8710, Advances in synthetic peptides reagent discovery, 87101B (29 May 2013); https://doi.org/10.1117/12.2017089
Advances in Radiological and Nuclear Detection I
Proc. SPIE 8710, The MODES_SNM project, 87101C (29 May 2013); https://doi.org/10.1117/12.2017997
Proc. SPIE 8710, Combined, solid-state molecular property and gamma spectrometers for CBRNE detection, 87101D (29 May 2013); https://doi.org/10.1117/12.2018429
Proc. SPIE 8710, Study and understanding of n/γ discrimination processes in organic plastic scintillators, 87101F (29 May 2013); https://doi.org/10.1117/12.2011330
Proc. SPIE 8710, Probing the gamma-scintillation process in semiconductor nanomaterials using ultrafast transient cathodoluminescence, 87101G (29 May 2013); https://doi.org/10.1117/12.2015495
Advances in Radiological and Nuclear Detection II
Proc. SPIE 8710, Continuous p-n junction with extremely low leakage current for micro-structured solid-state neutron detector applications, 87101J (29 May 2013); https://doi.org/10.1117/12.2016121
Proc. SPIE 8710, Neutron/gamma pulse shape discrimination (PSD) in plastic scintillators with digital PSD electronics, 87101K (29 May 2013); https://doi.org/10.1117/12.2018248
Poster Session
Proc. SPIE 8710, Femtosecond LIBS studies of nitropyrazoles, 87101O (29 May 2013); https://doi.org/10.1117/12.2015760
Proc. SPIE 8710, LIBS controls characterization of predictor corrector-based LIBS data collection, 87101P (29 May 2013); https://doi.org/10.1117/12.2016193
Back to Top