You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 May 2013Raman spectroscopy and imaging to detect contaminants for food safety applications
This study presents the use of Raman chemical imaging for the screening of dry milk powder for the presence of chemical contaminants and Raman spectroscopy for quantitative assessment of chemical contaminants in liquid milk. For image-based screening, melamine was mixed into dry milk at concentrations (w/w) between 0.2% and 10.0%, and images of the mixtures were analyzed by a spectral information divergence algorithm. Ammonium sulfate, dicyandiamide, and urea were each separately mixed into dry milk at concentrations (w/w) between 0.5% and 5.0%, and an algorithm based on self-modeling mixture analysis was applied to these sample images. The contaminants were successfully detected and the spatial distribution of the contaminants within the sample mixtures was visualized using these algorithms. Liquid milk mixtures were prepared with melamine at concentrations between 0.04% and 0.30%, with ammonium sulfate and with urea at concentrations between 0.1% and 10.0%, and with dicyandiamide at concentrations between 0.1% and 4.0%. Analysis of the Raman spectra from the liquid mixtures showed linear relationships between the Raman intensities and the chemical concentrations. Although further studies are necessary, Raman chemical imaging and spectroscopy show promise for use in detecting and evaluating contaminants in food ingredients.
The alert did not successfully save. Please try again later.
Kuanglin Chao, Jianwei Qin, Moon S. Kim, Yankun Peng, Diane Chan, Yu-Che Cheng, "Raman spectroscopy and imaging to detect contaminants for food safety applications," Proc. SPIE 8721, Sensing for Agriculture and Food Quality and Safety V, 87210S (29 May 2013); https://doi.org/10.1117/12.2018616