You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 May 2013Learning consensus in adversarial environments
This work presents a game theory-based consensus problem for leaderless multi-agent systems in the presence of
adversarial inputs that are introducing disturbance to the dynamics. Given the presence of enemy components
and the possibility of malicious cyber attacks compromising the security of networked teams, a position agreement
must be reached by the networked mobile team based on environmental changes. The problem is addressed under
a distributed decision making framework that is robust to possible cyber attacks, which has an advantage over
centralized decision making in the sense that a decision maker is not required to access information from all the
other decision makers. The proposed framework derives three tuning laws for every agent; one associated with
the cost, one associated with the controller, and one with the adversarial input.
The alert did not successfully save. Please try again later.
Kyriakos G. Vamvoudakis, Luis R. García Carrillo, João P. Hespanha, "Learning consensus in adversarial environments," Proc. SPIE 8741, Unmanned Systems Technology XV, 87410K (17 May 2013); https://doi.org/10.1117/12.2014372