18 May 2013 Lossless to lossy compression for hyperspectral imagery based on wavelet and integer KLT transforms with 3D binary EZW
Author Affiliations +
Abstract
In this paper, a lossless to lossy transform based image compression of hyperspectral images based on Integer Karhunen-Loève Transform (IKLT) and Integer Discrete Wavelet Transform (IDWT) is proposed. Integer transforms are used to accomplish reversibility. The IKLT is used as a spectral decorrelator and the 2D-IDWT is used as a spatial decorrelator. The three-dimensional Binary Embedded Zerotree Wavelet (3D-BEZW) algorithm efficiently encodes hyperspectral volumetric image by implementing progressive bitplane coding. The signs and magnitudes of transform coefficients are encoded separately. Lossy and lossless compressions of signs are implemented by conventional EZW algorithm and arithmetic coding respectively. The efficient 3D-BEZW algorithm is applied to code magnitudes. Further compression can be achieved using arithmetic coding. The lossless and lossy compression performance is compared with other state of the art predictive and transform based image compression methods on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. Results show that the 3D-BEZW performance is comparable to predictive algorithms. However, its computational cost is comparable to transform- based algorithms.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kai-jen Cheng, Kai-jen Cheng, Jeffrey Dill, Jeffrey Dill, "Lossless to lossy compression for hyperspectral imagery based on wavelet and integer KLT transforms with 3D binary EZW", Proc. SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, 87430U (18 May 2013); doi: 10.1117/12.2016200; https://doi.org/10.1117/12.2016200
PROCEEDINGS
10 PAGES


SHARE
Back to Top