You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 May 2013Target detection performed on manifold approximations recovered from hyperspectral data
In high dimensional data, manifold learning seeks to identify the embedded lower-dimensional, non-linear mani- fold upon which the data lie. This is particularly useful in hyperspectral imagery where inherently m-dimensional data is often sparsely distributed throughout the d-dimensional spectral space, with m << d. By recovering the manifold, inherent structures and relationships within the data – which are not typically apparent otherwise – may be identified and exploited. The sparsity of data within the spectral space can prove challenging for many types of analysis, and in particular with target detection. In this paper, we propose using manifold recovery as a preprocessing step for spectral target detection algorithms. A graph structure is first built upon the data and the transformation into the manifold space is based upon that graph structure. Then, the Adaptive Co- sine/Coherence Estimator (ACE) algorithm is applied. We present an analysis of target detection performance in the manifold space using scene-derived target spectra from two different hyperspectral images.
The alert did not successfully save. Please try again later.
Amanda K. Ziemann, David W. Messinger, James A. Albano, "Target detection performed on manifold approximations recovered from hyperspectral data," Proc. SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, 874319 (18 May 2013); https://doi.org/10.1117/12.2015780