Translator Disclaimer
14 June 2013 Information-theoretic method for wavelength selection in bioluminescence tomography
Author Affiliations +
Practical imaging constraints restrict the number of wavelengths that can be measured in a single Biolumines- cence Tomography imaging session, but it is unclear which set of measurement wavelengths is optimal, in the sense of providing the most information about the bioluminescent source. Mutual Information was used to integrate knowledge of the type of bioluminescent source likely to be present, the optical properties of tissue and physics of light propagation, and the noise characteristics of the imaging system, in order to quantify the information contained in measurements at different sets of wavelengths. The approach was applied to a two-dimensional sim- ulation of Bioluminescence Tomography imaging of a mouse, and the results indicate that different wavelengths and sets of wavelengths contain different amounts of information. When imaging at a single wavelength, 580nm was found to be optimal, and when imaging at two wavelengths, 570nm and 580nm were found to be optimal. Examination of the dispersion of the posterior distributions for single wavelengths suggests that information regarding the location of the centre of the bioluminescence distribution is relatively independent of wavelength, whilst information regarding the width of the bioluminescence distribution is relatively wavelength specific.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Hector R. A. Basevi, James A. Guggenheim, Hamid Dehghani, and Iain B. Styles "Information-theoretic method for wavelength selection in bioluminescence tomography", Proc. SPIE 8799, Diffuse Optical Imaging IV, 879909 (14 June 2013);

Back to Top