Paper
12 September 2013 Dynamic single-molecule force spectroscopy using optical tweezers and nanopores
Nadanai Laohakunakorn, Oliver Otto, Sebastian Sturm, Klaus Kroy, Ulrich F. Keyser
Author Affiliations +
Abstract
Single-molecule force spectroscopy is a powerful technique for studying the detailed behaviour of biopolymers such as DNA and proteins: by applying pN-scale forces to individual molecules, properties such as conformations, folding pathways, and intermolecular interaction strengths can be determined. Traditionally these studies have been carried out under static tension. The dynamic response of polymers to a sudden change in force is exper- imentally more challenging as the polymer is often coupled to an external molecular handle, which suppresses important physics at short (∼ms) timescales. Here we use a nanopore to electrically control the application of force to the end of a double-stranded DNA molecule; the other end of the molecule is attached to a bead held in an optical trap. By shutting off the voltage, the fast relaxation dynamics of the free polymer end can be studied. We observe for the first time an enhanced viscous friction which arises from the rapid internal contraction of the DNA, which is fully explained by theory. These studies pave the way for new dynamic force spectroscopy experiments, such as investigations of tension propagation along biomolecules, which has applications for both polymer theory as well as biological systems such as the cytoskeleton where dynamic tension can affect cellular response.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Nadanai Laohakunakorn, Oliver Otto, Sebastian Sturm, Klaus Kroy, and Ulrich F. Keyser "Dynamic single-molecule force spectroscopy using optical tweezers and nanopores", Proc. SPIE 8810, Optical Trapping and Optical Micromanipulation X, 88101F (12 September 2013); https://doi.org/10.1117/12.2027106
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Polymers

Optical tweezers

Molecules

Spectroscopy

Single molecule spectroscopy

Molecular spectroscopy

Mirrors

Back to Top