Translator Disclaimer
Paper
26 September 2013 Theoretical and experimental investigation of evanescent-wave absorption sensors for extreme temperature applications
Author Affiliations +
Abstract
Recently, significant developments in evanescent wave absorption sensors have been demonstrated for high temperature sensing applications based upon the optical responses of advanced thin film materials. We will demonstrate how such sensors can be utilized in a mode that allows for chemical or temperature sensing starting from basic theoretical considerations. We will also present experimental high temperature sensing results for fabricated sensors. Potential applications of the sensors to be discussed include a range of high temperature systems relevant for fossil energy and combustion monitoring such as industrial combustors or reaction vessels, solid oxide fuel cells, and gas turbines. In these applications, even a small increase in operating efficiency realized via careful observation of in-process parameters and implementation of real-time process controls can result in dramatic savings across the energy industry, illustrating the necessity of pursuing such techniques. It is hoped that sensors of the type described here will allow for unprecedented measurement-access to processes which present challenging high-temperature and chemically reactive environments.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Michael P. Buric, Paul Ohodnicki, and Benjamin Chorpening "Theoretical and experimental investigation of evanescent-wave absorption sensors for extreme temperature applications", Proc. SPIE 8816, Nanoengineering: Fabrication, Properties, Optics, and Devices X, 88160N (26 September 2013); https://doi.org/10.1117/12.2024167
PROCEEDINGS
16 PAGES


SHARE
Advertisement
Advertisement
Back to Top