You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 September 2013X-ray diffraction diagnostic design for the National Ignition Facility
This paper describes the design considerations for Target Diffraction In-Situ (TARDIS), an x-ray diffraction diagnostic
at the National Ignition Facility. A crystal sample is ramp-compressed to peak pressures between 10 and 30 Mbar and,
during a pressure hold period, is probed with quasi-monochromatic x-rays emanating from a backlighter source foil. The
crystal spectrography diffraction lines are recorded onto image plates. The crystal sample, filter, and image plates are
packaged into one assembly, allowing for accurate and repeatable target to image plate registration. Unconverted laser
light impinges upon the device, generating debris, the effects of which have been mitigated. Dimpled blast shields, high
strength steel alloy, and high-z tungsten are used to shield and protect the image plates. A tapered opening was designed
to provide adequate thickness of shielding materials without blocking the drive beams or x-ray source from reaching the
crystal target. The high strength steel unit serves as a mount for the crystal target and x-ray source foil. A tungsten body
contains the imaging components. Inside this sub-assembly, there are three image plates: a 160 degree field of view
curved plate directly opposite the target opening and two flat plates for the top and bottom. A polycarbonate frame,
coated with the appropriate filter material and embedded with registration features for image plate location, is inserted
into the diagnostic body. The target assembly is metrologized and then the diagnostic assembly is attached.
The alert did not successfully save. Please try again later.
Maryum F. Ahmed, Allen House, R. F. Smith, Jay Ayers, Zachary S. Lamb, David W. Swift, "X-ray diffraction diagnostic design for the National Ignition Facility," Proc. SPIE 8850, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion II, 88500N (26 September 2013); https://doi.org/10.1117/12.2025666