You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 September 2013Directional sensor control for maximizing information gain
We develop tractable solutions to the problem of controlling the directions of 2-D directional sensors for maximizing information gain corresponding to multiple targets in 2-D. The target locations are known with some uncertainty given by a joint prior distribution (Gaussian). A sensor generates a (noisy) measurement of a target only if the target lies within the field-of-view of the sensor, and the measurements from all the sensors are fused to form global estimates of target locations. This problem is hard to solve exactly - the computation time increases exponentially with the number of sensors. We develop heuristic methods to solve the problem approximately and provide lower and upper bounds on the optimal information gain. We improve the solutions from these heuristic approaches by formulating the problem as a dynamic programming problem and solving it using a rollout approach.
The alert did not successfully save. Please try again later.
Shankarachary Ragi, Hans D. Mittelmann, Edwin K. P. Chong, "Directional sensor control for maximizing information gain," Proc. SPIE 8857, Signal and Data Processing of Small Targets 2013, 88570J (30 September 2013); https://doi.org/10.1117/12.2022451