26 September 2013 A fast Monte Carlo algorithm for source localization on graphs
Author Affiliations +
Epidemic models on networks have long been studied by biologists and social sciences to determine the steady state levels of an infection on a network. Recently, however, several authors have begun considering the more difficult problem of estimating the source of an infection given information about its behavior some time after the initial infection. In this paper, we describe a technique to estimate the source of an infection on a general graph based on observations from a small set of observers during a fixed time window at some unknown time after the initial infection. We describe an alternate representation for the susceptible-infected (SI) infection model based on geodesic distances on a randomly-weighted version of the graph; this representation allows us to exploit fast algorithms to compute geodesic distances to estimate the marginal distributions for each observer and compute a pseudo-likelihood function that is maximized to find the source.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ameya Agaskar, Ameya Agaskar, Yue M. Lu, Yue M. Lu, "A fast Monte Carlo algorithm for source localization on graphs", Proc. SPIE 8858, Wavelets and Sparsity XV, 88581N (26 September 2013); doi: 10.1117/12.2023039; https://doi.org/10.1117/12.2023039


Finite element multiwavelets
Proceedings of SPIE (October 10 1994)
3D discrete shearlet transform and video denoising
Proceedings of SPIE (September 27 2011)
Multiple channel estimation using spectrally random probes
Proceedings of SPIE (September 04 2009)
Point target detection in segmented images
Proceedings of SPIE (August 26 2008)

Back to Top