Front Matter: Volume 8877
Unconventional Imaging and Wavefront Sensing 2013

Jean J. Dolne
Thomas J. Karr
Victor L. Gamiz
Editors

26–29 August 2013
San Diego, California, United States

Sponsored and Published by
SPIE
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN: 0277-786X
ISBN: 9780819497277

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2013, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/13/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier [CID] number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the last two digits of the six-digit CID Number.
Contents

SESSION 1 WAVEFRONT SENSING AND ADAPTIVE OPTICS

8877 03 Phased beam projection from tiled apertures in the presence of turbulence and thermal blooming [8877-2]
M. F. Spencer, M. W. Hyde IV, Air Force Institute of Technology (United States)

8877 04 Image-based wavefront compensation using deformable mirror for remote sensing telescope [8877-3]
N. Miyamura, Meisei Univ. (Japan)

8877 05 Aero-optic analysis of anisotropic turbulent boundary layer by direct integration [8877-4]
S. Taylor, J. Price, C. P. Chen, The Univ. of Alabama in Huntsville (United States); J. E. Pond, G. W. Sutton, Analysis and Applications Associates (United States)

SESSION 2 CODED APERTURE AND ACTIVE IMAGING

8877 08 Multi-shot compressed coded aperture imaging [8877-7]
X. Shao, J. Du, T. Wu, Z. Jin, Xidian Univ. (China)

8877 0A Estimation of illuminator scintillation in laser-illuminated imagery [8877-9]
D. C. Dayton, Applied Technology Associates (United States); J. B. Lasche, Air Force Research Lab. (United States)

8877 0B Inverse synthetic aperture ladar: a high-fidelity modeling and simulation tool [8877-10]
C. Pellizzari, Air Force Research Lab. (United States); M. Spencer, Air Force Institute of Technology (United States); N. Steinhoff, J. Belsher, G. A. Tyler, the Optical Sciences Company (tOSC) (United States); S. Williams, S. Williams, Air Force Research Lab. (United States)

SESSION 3 COMPRESSIVE SENSING AND IMAGE PROCESSING

8877 0C An adaptive total variation image reconstruction method for speckles through disordered media [8877-12]
C. Gong, X. Shao, T. Wu, Xidian Univ. (China)

8877 0D L1 -methods for low-power surveillance [8877-13]
M. S. Keegan, K.-Y. Ni, S. Rao, HRL Labs., LLC (United States)
SESSION 4 INFORMATION THEORETICAL EVALUATION AND SUPERRESOLUTION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8877 0E</td>
<td>Context and task-aware knowledge-enhanced compressive imaging</td>
<td>S. Rao, K.-Y. Ni, Y. Owechko, HRL Labs., LLC (United States)</td>
</tr>
<tr>
<td>8877 0F</td>
<td>Comparison of forward models and phase retrieval for image formation</td>
<td>D. Gerwe, Boeing Phantom Works (United States); P. Crabtree, Air Force Research Lab. (United States); R. Holmes, Boeing LTS Inc. (United States); J. Dolne, Boeing Phantom Works (United States)</td>
</tr>
</tbody>
</table>

POSTER SESSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8877 0K</td>
<td>The impact of space-time speckle to the resolution in range and azimuth</td>
<td>Q. Xu, Y. Zhou, J. Sun, Y. Zhi, X. Ma, Z. Sun, D. Lu, L. Liu, Shanghai Institute of Optics and Fine Mechanics (China)</td>
</tr>
<tr>
<td>8877 0L</td>
<td>Optical imaging process based on two-dimensional Fourier transform</td>
<td>Z. Sun, Y. Zhi, L. Liu, J. Sun, Y. Zhou, P. Hou, Shanghai Institute of Optics and Fine Mechanics (China)</td>
</tr>
<tr>
<td>8877 0N</td>
<td>Optimum pattern of the multi-aperture receiver for the synthetic</td>
<td>J. Sun, Y. Zhou, Y. Zhi, L. Liu, Shanghai Institute of Optics and Fine Mechanics (China)</td>
</tr>
<tr>
<td></td>
<td>aperture laser imaging ladar in the turbulence environment</td>
<td></td>
</tr>
</tbody>
</table>

Author Index
Conference Committee

Program Track Chairs

Stephen M. Hammel, Space and Naval Warfare Systems Command (United States)
Alexander M. J. van Eijk, TNO Defence, Security and Safety (Netherlands)

Conference Chairs

Jean J. Dolne, The Boeing Company (United States)
Thomas J. Karr, Defense Advanced Research Projects Agency (United States)
Victor L. Gamiz, Air Force Research Laboratory (United States)

Conference CoChair

David C. Dayton, Applied Technology Associates (United States)

Conference Program Committee

Stephen C. Cain, Air Force Institute of Technology (United States)
James Fienup, University of Rochester (United States)
Wes D. Freiwald, Pacific Defense Solutions, LLC (United States)
Richard B. Holmes, Boeing LTS Inc. (United States)
Liren Liu, Shanghai Institute of Optics and Fine Mechanics (China)
Zhaowei Liu, University of California, San Diego (United States)
Sergio R. Restaino, U.S. Naval Research Laboratory (United States)
Michael C. Roggemann, Michigan Technological University (United States)
Robert K. Tyson, The University of North Carolina at Charlotte (United States)
David G. Voelz, New Mexico State University (United States)

Session Chairs

1 Wavefront Sensing and Adaptive Optics
 David C. Dayton, Applied Technology Associates (United States)

2 Coded Aperture and Active Imaging
 Richard B. Holmes, Boeing LTS Inc. (United States)

3 Compressive Sensing and Image Processing
 Victor L. Gamiz, Air Force Research Laboratory (United States)

4 Information Theoretical Evaluation and Superresolution
 Jean J. Dolne, The Boeing Company (United States)