Delivering complexity at the frontier of electronics

Michael C. Mayberry
Delivering Complexity at the Frontier of Electronics

Mike Mayberry
Director of Components Research
VP, Intel Corporation

September 2013
Complexity Sells

- Enables the impossible to become possible
- Complexity that enables simplicity of use
- Complexity can take many forms (density, structure, data, function, ...) but ultimately people pay for use
- Delivering complexity makes our business go!
“Any sufficiently advanced technology is indistinguishable from magic”
- Arthur C. Clarke 1973

Intel 2013

Every 2 years
Intel delivers a new manufacturing process

2x Better
than the previous generation

Intel in the Future

1 x 10^9
1 billion transistors fit into an area of One square centimeter

~1 x 10^18
Intel ships about one quintillion transistors per year
We Need Both New Materials & New Structures

Increasing Coupling
"idle power"
Planar With High K

Increasing Mobility
"performance"
(can trade for power)
Strain

Fins & Multigate

PMOS Ieff @ 0.7V (Normalized)
Proc. of SPIE Vol. 8880 888002-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 16 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
High Performance Computing Segment Needs
Decades of Performance Increases
FLOPS
Zeta
Exa
Pera
Tera
Giga

Sauce: Itatmessor MeetmGoS23

Need Multiple Applied Sciences to reap benefits

Crafting Films with Atomic Layer Deposition

X-ray Space Telescope
Multi-layer Coatings
EUV Lithography

Precision Mirrors

Immersion Lithography

Materials Synthesis
Computational Materials

X-ray Space Telescope
Precision Mirrors
Immersion Lithography

Need Multiple Applied Sciences to reap benefits

Computational Materials

Materials Synthesis

Proc. of SPIE Vol. 8880 888002-6
The Evolution of Personal Computing

Productivity
80s and 90s

Portability
00s

Ubiquity
10s
What Happens in an Internet Minute?

639,800 GB of global IP data transferred

- 6 Botnet infections
- 135 New mobile users
- 1,300 New victims of identity theft
- 61,141 New Wikipedia articles published
- 204 million New victims of identity theft
- 583,000 New victims of identity theft

639,800 GB of global IP data transferred

- 20 App downloads
- 204 million Emails sent
- 47,000 Photo views
- 20 million Photo uploads
- 2 million Photo uploads
- 100,000 New Twitter accounts

And Future Growth is Staggering

Today, the number of networked devices = the global population

By 2015, the number of networked devices = 2x the global population

In 2015, it would take you 5 years to view all video crossing IP networks each second

Proc. of SPIE Vol. 8880 888002-9
Key Points

• Complexity just from density is insufficient and it has been that way for a decade or more ... increasing value from structure (materials), functions, and data

• Complexity that enables simplicity of use is driving the end market more today than in the past

• Delivering complexity at the right price point makes our business go!
The (likely) near future
Optimizing Choices for Transistors on Multiple Fronts

- Increasing COUPLING (better OFF)
 - Planar with High K
 - UTB SOI (or QW)
 - Fins
 - Wires/Dots

- Increasing MOBILITY (better ON)
 - Strain
 - Ge
 - III-V
 - CNT
 - Graphene
Optimizing Choices for Printed Information

Line Double (& Quadruple)

Dense but low information

High customization

Some useful design

Direct Write

EUV

193i

Single exposure limit

Pattern Split

Cost proportional to information

Cost/Vol Tradeoff
The Gate All Around (GAA) Architecture is the Limit to Structural Electrostatic Control

Source: K. Kuhn et al. TED 59:7 2012
Increasing Capability (Information) of a Single Mask

Conventional Mask Structure

Alternate Phase Shift

More printed information
For given tool capability

Higher information density

Source: P. Yan, SPEI 2011
Are there fundamental physical limits?

- 5nm device structures have been demonstrated in research labs
- New device architectures are under investigation

Our ability to control is more a limitation than the physics
Control implies we can measure and co-optimize
Managing Material Properties at Nanometer Scale

Grain scattering dominates
Need sub-nm material engineering

Cu wires at 17nm drawn dimension
(colors indicate crystal orientation)
Another Sub-nm Example

Pit defect
50 pairs Mo/Si

Bump defect
40 pairs Mo/Si

TEM of 50-pair ML
covered 11nm etched step

Source: Courtesy of SEMATECH and P. Yan, SPEI 2011
How Small Can We Fabricate and Control?

“Self-Assembling Materials for Lithographic Patterning”
Bill Hinsberg et al, IBM.SPIE 2010

7nm half-pitch
IBM, Park et al, Nanotech 19 2008

Cai et al, Nature July 2010
Control Requires Co-Optimization

Production Share
Has dramatically shifted into captive production

Source: Courtesy of VLSI Research 2013
Inflection Points

Granularity
Size limited by Electrical behavior
Voltage scaling limited by Mobility
Interconnects limit performance

“The only way of discovering the limits of the possible is to venture a little way past them into the impossible”
- Arthur C. Clarke 1962
Alternative paths

Source: Google Earth

Magic Roundabout, Swindon, UK
Future systems will integrate a much wider variety of materials and device structures.

Source: IEDM 2011: The Evolution of Scaling from the Homogeneous Era to the Heterogeneous Era, M. Bohr
Layer Stack Density Benefit: 30-50%

Widespread use requires new design methods ... and some new metrology
Beyond CMOS Devices - Noncharge

Spin Torque Majority Gate (STMG)
All Spin Logic (ASLD)
Spin Torque Domain Wall (STT/DW)

Spin Torque Oscillator (STO)
Spin Wave Device (SWD)
Nanomagnetic Logic (NML)

Source: D. Nikonov and I. Young, 2012 IEDM
Exploring Other Ways to Compute

Memory & Storage

Fetch

Store

Compute & Decide

Slower & larger

Faster & smaller

“Von Neumann”

Bottleneck = memory/storage
Transport limited devices make it worse

Unknown

Associate & Decide

Training set

Act

Bottleneck = training
Potentially favorable for novel devices
The Future of Mask Fabrication?

Massively parallel beam writing
Parallel beam writing
VSB (vector writing)
MEBES (single beam raster)
Key Messages

• Complexity sells ... and thus complexity is your friend

• Novel materials in complex 3D structures are here now and will be increasingly prevalent in the future

• Today we have even more choices than we have had in the past – this is both good and bad

• The future remains bright and masks remain an integral part of our future success
Thank You
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the first quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipates," "expects," "intends," "plans," "believes," "seeks," "estimates," "may," "will," "should" and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel's actual results, and variances from Intel's current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company's expectations. Demand could be different from Intel's expectations due to factors including changes in business and economic conditions, including supply constraints and other disruptions affecting customers; customer acceptance of Intel's and competitors' products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; and Intel's ability to respond quickly to technological developments and to incorporate new features into its products. Intel is in the process of transitioning to its next generation of products on 22nm process technology, and there could be execution and timing issues associated with these changes, including products defects and errata and lower than anticipated manufacturing yields. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; product mix and pricing; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. The majority of Intel's non-marketable equity investment portfolio balance is concentrated in companies in the flash memory market segment, and declines in this market segment or changes in management's plans with respect to Intel's investments in this market segment could result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest and other. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel's results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting us from manufacturing or selling one or more products, precluding particular business practices, impacting Intel's ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel's results is included in Intel's SEC filings, including the annual report on Form 10-K for the fiscal year ended December 31, 2012.