Translator Disclaimer
24 October 2013 Quantification of changes in oil sands mining infrastructure land based on RapidEye and SPOT5
Author Affiliations +
Natural resources development, spanning exploration, production and transportation activities, alters local land surface at various spatial scales. Quantification of these anthropogenic changes, both permanent and reversible, is needed for compliance assessment and for development of effective sustainable management strategies. Multi-spectral high resolution imagery data from SPOT5 and RapidEye were used for extraction and quantification of the anthropogenic and natural changes for a case study of Alberta bitumen (oil sands) mining located near Fort McMurray, Canada. Two test sites representative of the major Alberta bitumen production extraction processes, open pit and in-situ extraction, were selected. A hybrid change detection approach, combining pixel- and object-based target detection and extraction, is proposed based on Change Vector Analysis (CVA). The extraction results indicate that the changed infrastructure landscapes of these two sites have different footprints linked with their differing oil sands production processes. Pixeland object-based accuracy assessments have been applied for validation of the change detection results. For manmade disturbances, other than fine linear features such as the seismic lines, accuracies of about 80% have been achieved at the pixel level while, at the object level, these rise to 90-95%. Since many disturbance features are transient, the land surface changes by re-growth of vegetation and the capability for natural restoration on the mining sites have been assessed.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ying Zhang, Nicholas Lantz, Bert Guindon, Todd Shipman, Dennis Chao, and Don Raymond "Quantification of changes in oil sands mining infrastructure land based on RapidEye and SPOT5", Proc. SPIE 8893, Earth Resources and Environmental Remote Sensing/GIS Applications IV, 889302 (24 October 2013);

Back to Top