You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 February 2014High-speed dual-wavelength optical polarimetry for glucose sensing
Optical polarimetry in the anterior chamber of the eye has emerged as a potential technique to non-invasively measure glucose levels for diabetes. Time varying corneal birefringence due to eye motion artifact confounds the optical signal ultimately limiting the polarimetric technique from accurately predicting glucose concentrations. In this study, a high speed dual-wavelength optical polarimetric approach was developed and in vitro phantom studies were performed with and without motion. The glucose concentrations ranged from 0-600 mg/dL at 100 mg/dL increments. The polarimeter produced glucose measurements with less than a 10 msec stabilization time and yielding standard errors of less than 10 mg/dL without motion and standard errors less than 26 mg/dL with motion. The results indicate a high speed dual-wavelength polarimetric approach has the potential to be used for non-invasive glucose measurements.
The alert did not successfully save. Please try again later.
Daniel T. Grunden, Casey W. Pirnstill, Gerard L. Coté, "High-speed dual-wavelength optical polarimetry for glucose sensing," Proc. SPIE 8951, Optical Diagnostics and Sensing XIV: Toward Point-of-Care Diagnostics, 895111 (28 February 2014); https://doi.org/10.1117/12.2040239