Translator Disclaimer
12 March 2014 High-brightness 800nm fiber-coupled laser diodes
Author Affiliations +
Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W – 5 W. Consequently, commercially available fiber coupled modules only deliver 5W – 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yuri Berk, Moshe Levy, Noam Rappaport, Renana Tessler, Ophir Peleg, Moshe Shamay, Dan Yanson, Genadi Klumel, Nir Dahan, Ilya Baskin, and Lior Shkedi "High-brightness 800nm fiber-coupled laser diodes", Proc. SPIE 8965, High-Power Diode Laser Technology and Applications XII, 89650M (12 March 2014);


Back to Top