You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 February 2014Tunable MEMS-VCSEL with >140-nm tuning range using tuning range using SiO2/SiC-based MEMS-DBR
With the use of SiO2/SiC based movable MEMS-DBR, the continuous tuning range of electrically pumped MEMS-VCSEL can be extended to > 140 nm. The high refractive index contrast of Δn > 1 between SiO2 and SiC reduces the needed number of layers (11 layers) and broadens the spectral width of the reflectivity (448nm for R > 99.5 %) by more than a factor of two compared to the material system SiO2/Si3N4 (23 layers / 216nm for R > 99.5 %), which has been used for the current world record continuous tuning range of 100nm of an electrically pumped MEMS-VCSEL. The smaller number of needed DBR-layers enables a significant reduction of the overall mirror thickness, which enables a further miniaturization of the device and thus an increase of the free spectral range (FSR), the ultimate limit for continuous wavelength tuning. In this paper we evaluate the performance advantages of using SiO2/SiC based MEMS-DBR for tunable VCSEL by using Transfer-matrix method simulations.
The alert did not successfully save. Please try again later.
Christian Gierl, Karolina Zogal, Sujoy Paul, Franko Küppers, "Tunable MEMS-VCSEL with >140-nm tuning range using tuning range using SiO2/SiC-based MEMS-DBR," Proc. SPIE 9001, Vertical-Cavity Surface-Emitting Lasers XVIII, 900107 (27 February 2014); https://doi.org/10.1117/12.2041280