You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 February 2014Occlusion-removedcomputer generated cylindrical hologram using 3D point cloud
Viewing angle of the conventional flat hologram is not very large (less than 180°) attributed to their planar observation surface. If we want to synthesize a wide view computer generated hologram, a numerical simulation of the diffraction on the non-planar observation surfaces is required, computer generated cylindrical hologram (CGCH) can be a solution. Approximately 2,500 object points were used for this research. We have realized a CGCH that is viewable in 360°. However, the heavy computation load is one of the issues. Therefore, we propose a fast calculation method for a computer generated cylindrical hologram by the use of wave-front recording surface. The wave-front recording surface is placed between the object data and a CGCH. When the wave-front recording surface is placed close to the object, the object light passes through a small region on the wave recording surface. Therefore the computational complexity for the object light is very small. We can obtain a CGCH to execute diffraction calculation from the wave-front recording surface, propagating the recorded optical field of the wave-front recording surface to the cylindrical hologram surface using only two FFT operations and hence is much faster.
The alert did not successfully save. Please try again later.
Yu Zhao, Gang Li, Mei-Lan Piao, Hyun Min Lee, Nam Kim, "Occlusion-removedcomputer generated cylindrical hologram using 3D point cloud," Proc. SPIE 9006, Practical Holography XXVIII: Materials and Applications, 90061H (25 February 2014); https://doi.org/10.1117/12.2039775