You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 February 2014A framework for analysis of the upper airway from real-time MRI sequences
In recent years, real-time Magnetic Resonance Imaging (RT-MRI) has been used to acquire vocal tract data to support articulatory studies. The large amount of images resulting from these acquisitions needs to be processed and the resulting data analysed to extract articulatory features. This analysis is often performed by linguists and phoneticists and requires not only tools providing a high level exploration of the data, to gather insight over the different aspects of speech, but also a set of features to compare different vocal tract configurations in static and dynamic scenarios. In order to make the data available in a faster and systematic fashion, without the continuous direct involvement of image processing specialists, a framework is being developed to bridge the gap between the more technical aspects of raw data and the higher level analysis required by speech researchers. In its current state it already includes segmentation of the vocal tract, allows users to explore the different aspects of the acquired data using coordinated views, and provides support for vocal tract configuration comparison. Beyond the traditional method of visual comparison of vocal tract profiles, a quantitative method is proposed, considering relevant anatomical features, supported by an abstract representation of the data both for static and dynamic analysis.
The alert did not successfully save. Please try again later.
Samuel Silva, António Teixeira, "A framework for analysis of the upper airway from real-time MRI sequences," Proc. SPIE 9017, Visualization and Data Analysis 2014, 901703 (3 February 2014); https://doi.org/10.1117/12.2042081