You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 March 2014Time-to-digital converter based on analog time expansion for 3D time-of-flight cameras
This paper presents an architecture and achievable performance for a time-to-digital converter, for 3D time-of-flight cameras. This design is partitioned in two levels. In the first level, an analog time expansion, where the time interval to be measured is stretched by a factor k, is achieved by charging a capacitor with current I, followed by discharging the capacitor with a current I/k. In the second level, the final time to digital conversion is performed by a global gated ring oscillator based time-to-digital converter. The performance can be increased by exploiting its properties of intrinsic scrambling of quantization noise and mismatch error, and first order noise shaping. The stretched time interval is measured by counting full clock cycles and storing the states of nine phases of the gated ring oscillator. The frequency of the gated ring oscillator is approximately 131 MHz, and an appropriate stretch factor k, can give a resolution of ≈ 57 ps. The combined low nonlinearity of the time stretcher and the gated ring oscillator-based time-to-digital converter can achieve a distance resolution of a few centimeters with low power consumption and small area occupation. The carefully optimized circuit configuration achieved by using an edge aligner, the time amplification property and the gated ring oscillator-based time-to-digital converter may lead to a compact, low power single photon configuration for 3D time-of-flight cameras, aimed for a measurement range of 10 meters.
The alert did not successfully save. Please try again later.
Muhammad Tanveer, Ilkka Nissinen, Jan Nissinen, Juha Kostamovaara, Johan Borg, Jonny Johansson, "Time-to-digital converter based on analog time expansion for 3D time-of-flight cameras," Proc. SPIE 9022, Image Sensors and Imaging Systems 2014, 90220A (4 March 2014); https://doi.org/10.1117/12.2036539