You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 March 2014Embedded FIR filter design for real-time refocusing using a standard plenoptic video camera
A novel and low-cost embedded hardware architecture for real-time refocusing based on a standard plenoptic camera is presented in this study. The proposed layout design synthesizes refocusing slices directly from micro images by omitting the process for the commonly used sub-aperture extraction. Therefore, intellectual property cores, containing switch controlled Finite Impulse Response (FIR) filters, are developed and applied to the Field Programmable Gate Array (FPGA) XC6SLX45 from Xilinx. Enabling the hardware design to work economically, the FIR filters are composed of stored product as well as upsampling and interpolation techniques in order to achieve an ideal relation between image resolution, delay time, power consumption and the demand of logic gates. The video output is transmitted via High-Definition Multimedia Interface (HDMI) with a resolution of 720p at a frame rate of 60 fps conforming to the HD ready standard. Examples of the synthesized refocusing slices are presented.
The alert did not successfully save. Please try again later.
Christopher Hahne, Amar Aggoun, "Embedded FIR filter design for real-time refocusing using a standard plenoptic video camera," Proc. SPIE 9023, Digital Photography X, 902305 (7 March 2014); https://doi.org/10.1117/12.2042495