You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 February 2014Video-based facial discomfort analysis for infants
Prematurely born infants receive special care in the Neonatal Intensive Care Unit (NICU), where various physiological parameters, such as heart rate, oxygen saturation and temperature are continuously monitored. However, there is no system for monitoring and interpreting their facial expressions, the most prominent discomfort indicator. In this paper, we present an experimental video monitoring system for automatic discomfort detection in infants’ faces based on the analysis of their facial expressions. The proposed system uses an Active Appearance Model (AAM) to robustly track both the global motion of the newborn’s face, as well as its inner features. The system detects discomfort by employing the AAM representations of the face on a frame-by-frame basis, using a Support Vector Machine (SVM) classifier. Three contributions increase the performance of the system. First, we extract several histogram-based texture descriptors to improve the AAM appearance representations. Second, we fuse the outputs of various individual SVM classifiers, which are trained on features with complementary qualities. Third, we improve the temporal behavior and stability of the discomfort detection by applying an averaging filter to the classification outputs. Additionally, for a higher robustness, we explore the effect of applying different image pre-processing algorithms for correcting illumination conditions and for image enhancement to evaluate possible detection improvements. The proposed system is evaluated in 15 videos of 8 infants, yielding a 0.98 AUC performance. As a bonus, the system offers monitoring of the infant’s expressions when it is left unattended and it additionally provides objective judgment of discomfort.
The alert did not successfully save. Please try again later.
E. Fotiadou, S. Zinger, W. E. Tjon a Ten, S. Bambang Oetomo, P. H. N. de With, "Video-based facial discomfort analysis for infants," Proc. SPIE 9029, Visual Information Processing and Communication V, 90290F (17 February 2014); https://doi.org/10.1117/12.2037661