You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 March 2014Estimation of sparse null space functions for compressed sensing in SPECT
Compressed sensing (CS) [1] is a novel sensing (acquisition) paradigm that applies to discrete-to-discrete system models and asserts exact recovery of a sparse signal from far fewer measurements than the number of unknowns [1- 2]. Successful applications of CS may be found in MRI [3, 4] and optical imaging [5]. Sparse reconstruction methods exploiting CS principles have been investigated for CT [6-8] to reduce radiation dose, and to gain imaging speed and image quality in optical imaging [9]. In this work the objective is to investigate the applicability of compressed sensing principles for a faster brain imaging protocol on a hybrid collimator SPECT system. As a proofof- principle we study the null space of the fan-beam collimator component of our system with regards to a particular imaging object. We illustrate the impact of object sparsity on the null space using pixel and Haar wavelet basis functions to represent a piecewise smooth phantom chosen as our object of interest.
The alert did not successfully save. Please try again later.
Joyeeta Mitra Mukherjee, Emil Sidky, Michael A. King, "Estimation of sparse null space functions for compressed sensing in SPECT," Proc. SPIE 9033, Medical Imaging 2014: Physics of Medical Imaging, 90330X (19 March 2014); https://doi.org/10.1117/12.2043611