Translator Disclaimer
19 March 2014 Low-dose CT reconstruction with patch based sparsity and similarity constraints
Author Affiliations +
As the rapid growth of CT based medical application, low-dose CT reconstruction becomes more and more important to human health. Compared with other methods, statistical iterative reconstruction (SIR) usually performs better in lowdose case. However, the reconstructed image quality of SIR highly depends on the prior based regularization due to the insufficient of low-dose data. The frequently-used regularization is developed from pixel based prior, such as the smoothness between adjacent pixels. This kind of pixel based constraint cannot distinguish noise and structures effectively. Recently, patch based methods, such as dictionary learning and non-local means filtering, have outperformed the conventional pixel based methods. Patch is a small area of image, which expresses structural information of image. In this paper, we propose to use patch based constraint to improve the image quality of low-dose CT reconstruction. In the SIR framework, both patch based sparsity and similarity are considered in the regularization term. On one hand, patch based sparsity is addressed by sparse representation and dictionary learning methods, on the other hand, patch based similarity is addressed by non-local means filtering method. We conducted a real data experiment to evaluate the proposed method. The experimental results validate this method can lead to better image with less noise and more detail than other methods in low-count and few-views cases.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Qiong Xu and Xuanqin Mou "Low-dose CT reconstruction with patch based sparsity and similarity constraints", Proc. SPIE 9033, Medical Imaging 2014: Physics of Medical Imaging, 903338 (19 March 2014);

Back to Top