You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 March 2014Prostate tissue decomposition via DECT using the model based iterative image reconstruction algorithm DIRA
Better knowledge of elemental composition of patient tissues may improve the accuracy of absorbed dose delivery
in brachytherapy. Deficiencies of water-based protocols have been recognized and work is ongoing to implement
patient-specific radiation treatment protocols. A model based iterative image reconstruction algorithm DIRA
has been developed by the authors to automatically decompose patient tissues to two or three base components
via dual-energy computed tomography. Performance of an updated version of DIRA was evaluated for the
determination of prostate calcification. A computer simulation using an anthropomorphic phantom showed that
the mass fraction of calcium in the prostate tissue was determined with accuracy better than 9%. The calculated
mass fraction was little affected by the choice of the material triplet for the surrounding soft tissue. Relative
differences between true and approximated values of linear attenuation coefficient and mass energy absorption
coefficient for the prostate tissue were less than 6% for photon energies from 1 keV to 2 MeV. The results indicate
that DIRA has the potential to improve the accuracy of dose delivery in brachytherapy despite the fact that
base material triplets only approximate surrounding soft tissues.
The alert did not successfully save. Please try again later.
Alexandr Malusek, Maria Magnusson, Michael Sandborg, Robin Westin, Gudrun Alm Carlsson, "Prostate tissue decomposition via DECT using the model based iterative image reconstruction algorithm DIRA," Proc. SPIE 9033, Medical Imaging 2014: Physics of Medical Imaging, 90333H (19 March 2014); https://doi.org/10.1117/12.2043445