12 March 2014 Dynamic tracking of a deformable tissue based on 3D-2D MR-US image registration
Author Affiliations +
Real-time registration of pre-operative magnetic resonance (MR) or computed tomography (CT) images with intra-operative Ultrasound (US) images can be a valuable tool in image-guided therapies and interventions. This paper presents an automatic method for dynamically tracking the deformation of a soft tissue based on registering pre-operative three-dimensional (3D) MR images to intra-operative two-dimensional (2D) US images. The registration algorithm is based on concepts in state estimation where a dynamic finite element (FE)- based linear elastic deformation model correlates the imaging data in the spatial and temporal domains. A Kalman-like filtering process estimates the unknown deformation states of the soft tissue using the deformation model and a measure of error between the predicted and the observed intra-operative imaging data. The error is computed based on an intensity-based distance metric, namely, modality independent neighborhood descriptor (MIND), and no segmentation or feature extraction from images is required. The performance of the proposed method is evaluated by dynamically deforming 3D pre-operative MR images of a breast phantom tissue based on real-time 2D images obtained from an US probe. Experimental results on different registration scenarios showed that deformation tracking converges in a few iterations. The average target registration error on the plane of 2D US images for manually selected fiducial points was between 0.3 and 1.5 mm depending on the size of deformation.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Bahram Marami, Bahram Marami, Shahin Sirouspour, Shahin Sirouspour, Aaron Fenster, Aaron Fenster, David W. Capson, David W. Capson, "Dynamic tracking of a deformable tissue based on 3D-2D MR-US image registration", Proc. SPIE 9036, Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling, 90360T (12 March 2014); doi: 10.1117/12.2043896; https://doi.org/10.1117/12.2043896

Back to Top