24 June 2014 AIM cryocooler developments for HOT detectors
Author Affiliations +
Abstract
Significantly increased FPA temperatures for both Mid Wave and Long Wave IR detectors, i.e. HOT detectors, which have been developed in recent years are now leaving the development phase and are entering real application. HOT detectors allowing to push size weight and power (SWaP) of Integrated Detectors Cooler Assemblies (IDCA’s) to a new level. Key component mainly driving achievable weight, volume and power consumption is the cryocooler. AIM cryocooler developments are focused on compact, lightweight linear cryocoolers driven by compact and high efficient digital cooler drive electronics (DCE) to also achieve highest MTTF targets. This technology is using moving magnet driving mechanisms and dual or single piston compressors. Whereas SX030 which was presented at SPIE in 2012 consuming less 3 WDC to operate a typical IDCA at 140K, next smaller cooler SX020 is designed to provide sufficient cooling power at detector temperature above 160K. The cooler weight of less than 200g and a total compressor length of 60mm makes it an ideal solution for all applications with limited weight and power budget, like in handheld applications. For operating a typical 640x512, 15μm MW IR detector the power consumption will be less than 1.5WDC. MTTF for the cooler will be in excess of 30,000h and thus achieving low maintenance cost also in 24/7 applications. The SX020 compressor is based on a single piston design with integrated passive balancer in a new design achieves very low exported vibration in the order of 100mN in the compressor axis. AIM is using a modular approach, allowing the chose between 5 different compressor types for one common Stirling expander. The 6mm expander with a total length of 74mm is now available in a new design that fits into standard dewar bores originally designed for rotary coolers. Also available is a 9mm coldfinger in both versions. In development is an ultra-short expander with around 35mm total length to achieve highest compactness. Technical solutions and key performance data for AIM’s HOT cryocoolers will be presented.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
I. Rühlich, I. Rühlich, M. Mai, M. Mai, A. Withopf, A. Withopf, C. Rosenhagen, C. Rosenhagen, } "AIM cryocooler developments for HOT detectors", Proc. SPIE 9070, Infrared Technology and Applications XL, 90702P (24 June 2014); doi: 10.1117/12.2052698; https://doi.org/10.1117/12.2052698
PROCEEDINGS
8 PAGES


SHARE
Back to Top