Translator Disclaimer
28 May 2014 High-throughput Raman chemical imaging for evaluating food safety and quality
Author Affiliations +
A line-scan hyperspectral system was developed to enable Raman chemical imaging for large sample areas. A custom-designed 785 nm line-laser based on a scanning mirror serves as an excitation source. A 45° dichroic beamsplitter reflects the laser light to form a 24 cm x 1 mm excitation line normally incident on the sample surface. Raman signals along the laser line are collected by a detection module consisting of a dispersive imaging spectrograph and a CCD camera. A hypercube is accumulated line by line as a motorized table moves the samples transversely through the laser line. The system covers a Raman shift range of -648.7-2889.0 cm-1 and a 23 cm wide area. An example application, for authenticating milk powder, was presented to demonstrate the system performance. In four minutes, the system acquired a 512x110x1024 hypercube (56,320 spectra) from four 47-mm-diameter Petri dishes containing four powder samples. Chemical images were created for detecting two adulterants (melamine and dicyandiamide) that had been mixed into the milk powder.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jianwei Qin, Kuanglin Chao, and Moon S. Kim "High-throughput Raman chemical imaging for evaluating food safety and quality", Proc. SPIE 9108, Sensing for Agriculture and Food Quality and Safety VI, 91080F (28 May 2014);

Back to Top