You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 May 2014948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution
We present in this study a PM all-fiber laser oscillator passively mode-locked (ML) at 1.03 μm. The laser is based on
Nonlinear Polarization Evolution (NPE) in polarization maintaining (PM) fibers. In order to obtain the mode-locking
regime, a nonlinear reflective mirror including a fibered polarizer, a long fiber span and a fibered Faraday mirror (FM) is
inserted in a Fabry-Perot laser cavity.
In this work we explain the principles of operation of this original laser design that permits to generate ultrashort pulses
at low repetition (lower that 1MHz) rate with a cavity length of 100 m of fiber. In this experiment, the measured pulse
duration is about 6 ps. To our knowledge this is the first all-PM mode-locked laser based on the NPE with a cavity of
100m length fiber and a delivered pulse duration of few picosecondes.
Furthermore, the different mode-locked regimes of the laser, i.e. multi-pulse, noise-like mode-locked and single pulse,
are presented together with the ways of controlling the apparition of these regimes. When the single pulse mode-locking
regime is achieved, the laser delivers linearly polarized pulses in a very stable way.
Finally, this study includes numerical results which are obtained with the resolution of the NonLinear Schrodinger
Equations (NLSE) with the Split-Step Fourier (SSF) algorithm. This modeling has led to the understanding of the
different modes of operation of the laser. In particular, the influence of the peak power on the reflection of the nonlinear
mirror and its operation are studied.
The alert did not successfully save. Please try again later.
S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. Fotiadi, P. Mégret, "948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 µm mode-locked fiber laser based on nonlinear polarization evolution," Proc. SPIE 9135, Laser Sources and Applications II, 91351I (1 May 2014); https://doi.org/10.1117/12.2052108