9 September 2014 Quantum dots: using the known as well as exploring the unknown
Author Affiliations +
Super-resolution microscopy, the imaging of features below the Abbe diffraction limit, has been achieved by a number of methods in recent years. Each of these methods relies on breaking one of the assumptions made in the derivation of the diffraction limit. While uniform spatial illumination, linearity and time independence have been the most common cornerstones of the Abbe limit broken in super-resolution modalities, breaking the ‘classicality of light’ assumption as a pathway to achieve super-resolution has not been shown. Here we demonstrate a method that utilizes the antibunching characteristic of light emitted by Quantum Dots (QDs), a purely quantum feature of light, to obtain imaging beyond the diffraction limit. Measuring such high order correlations in the emission of a single QD necessitates stability at saturation conditions while avoiding damage and enhanced blinking. This ability was facilitated through new understandings that arisen from exploring the QD ‘blinking’ phenomena. We summarize here two studies that contributed to our current understanding of QD stability.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ron Tenne, Ron Tenne, Osip Schwartz, Osip Schwartz, Ayelet Teitelboim, Ayelet Teitelboim, Pazit Rukenstien, Pazit Rukenstien, Jonathan M. Levitt, Jonathan M. Levitt, Taleb Mokari, Taleb Mokari, Dan Oron, Dan Oron, "Quantum dots: using the known as well as exploring the unknown", Proc. SPIE 9165, Physical Chemistry of Interfaces and Nanomaterials XIII, 916519 (9 September 2014); doi: 10.1117/12.2061690; https://doi.org/10.1117/12.2061690

Back to Top